|
|
Remote Sensing of Tropical Cyclone Thermal Structure from Satellite Microwave Sounding Instruments: Impacts of Optimal Channel Selection on Retrievals |
Yang HAN1, and Fuzhong WENG2 |
1. Nanjing University of Information Science & Technology, Nanjing 210044;
2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081 |
|
|
Abstract Accurate information on atmospheric temperature of tropical cyclones (TCs) is important for monitoring and prediction of their developments and evolution. For hurricanes, temperature anomaly in the upper troposphere can be derived from Advanced Microwave Sounding Unit (AMSU) and Advanced Technology Microwave Sounder (ATMS) through either regression-based or variational retrieval algorithms. This study investigates the dependency of TC warm core structure on emission and scattering processes in the forward operator used for radiance computations in temperature retrievals. In particular, the precipitation scattering at ATMS high-frequency channels can significantly change the retrieval outcomes. The simulation results in this study reveal that the brightness temperatures at 183 GHz could be depressed by 30-50 K under cloud ice water path of 1.5 mm, and thus, the temperature structure in hurricane atmosphere could be distorted if the ice cloud scattering was inaccurately characterized in the retrieval system. It is found that for Hurricanes Irma, Maria, and Harvey that occurred in 2017, their warm core anomalies retrieved from ATMS temperature sounding channels 4-15 were more reasonable and realistic, compared with the retrievals from all other channel combinations and earlier hurricane simulation results.
|
Received: 22 January 2018
Final Form: 11 July 2018
Published Online: 19 October 2018
|
Supported by: Supported by the National Natural Science Foundation of China (91337218 and 41475103) and China Meteorological Administration Special Public Welfare Research Fund (GYHY201406008) |
Corresponding Authors:
Fuzhong WENG
E-mail: fweng58@gmail.com
|
|
|
|
Bauer, P., E. Moreau, F. Chevallier, et al., 2006:Multiple-scattering microwave radiative transfer for data assimilation applications. Quart. J. Roy. Meteor. Soc., 132, 1259-1281, doi:10.1256/qj.05.153
Boukabara, S. A., K. Garrett, W. C. Chen, et al., 2011:MiRS:An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 3249-3272, doi:10.1109/tgrs.2011.2158438
Brown, S., B. Lambrigtsen, B. Lim, et al, 2017:Demonstrating the impact of rapid repeat passive microwave observations from the global hawk:Implications for future smallsat or GEO missions. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Fort Worth, TX, USA, 5938-5941, doi:10.1109/IGARSS.2017.8128361.
Chen, H., and D. L. Zhang, 2013:On the rapid intensification of Hurricane Wilma (2005). Part Ⅱ:Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146-162, doi:10.1175/JAS-D-12-062.1
Clough, S. A., M. W. Shephard, E. J. Mlawer, et al., 2005:Atmospheric radiative transfer modeling:A summary of the AER codes. J. Quantit. Spectros. Radia. Trans., 91, 233-244, doi:10.1016/j.jqsrt.2004.05.058
Dolling, K., and G. M. Barnes, 2014:The evolution of Hurricane Humberto (2001). J. Atmos. Sci., 71, 1276-1291, doi:10.1175/JAS-D-13-0164.1
Gray, W. M., 1968:Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
Halverson, J. B., J. Simpson, G. Heymsfield, et al., 2006:Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309-324, doi:10.1175/JAS3596.1
Han, Y., F. Z. Weng, X. L. Zou, et al., 2016:Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements. J. Geophys. Res. Atmos., 121, 4933-4950, doi:10.1002/2015JD024278
Hawkins, H. F., and D. T. Rubsam, 1968:Hurricane Hilda, 1964. Mon. Wea. Rev, 96, 617-636, doi:10.1175/1520-0493(1968)096<0701:HH>2.0.CO;2
Hawkins, H. F., and S. M. Imbembo, 1976:The structure of a small, intense hurricane-Inez 1966. Mon. Wea. Rev., 104, 418-442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2
JPSS ATMS ATBD, 2013:Joint Polar Satellite System (JPSS) Advanced Technology Microwave Sounder (ATMS) SDR Calibration Algorithm Theoretical Basic Document (ATBD).[Available online at https://www.star.nesdis.noaa.gov/smcd/spb/nsun/snpp/ATMS/ATMS-SDR-ATBD-2013-final.pdf]. Accessed online on 5 September 2018.
Kidder, S. Q., M. D. Goldberg, R. M. Zehr, et al., 2000:Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 1241-1259, doi:10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2
Kim, E., C.-H. J. Lyu, K. Anderson, et al., 2014:S-NPP ATMS instrument prelaunch and on-orbit performance evaluation. J. Geophys. Res. Atmos., 119, 5653-5670, doi:10.1002/2013JD020483
Komaromi, W. A., and J. D. Doyle, 2017:Tropical cyclone outflow and warm core structure as revealed by HS3 dropsonde data. Mon. Wea. Rev., 145, 1339-1359, doi:10.1175/MWR-D-16-0172.1
La Seur, N. E., and H. F. Hawkins, 1963:An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694-709, doi:10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2
Liu, G. S., and J. A. Curry, 1993:Determination of characteristic features of cloud liquid water from satellite microwave measurements. J. Geophys. Res. Atmos., 98, 5069-5092, doi:10.1029/92JD02888
Liu, Q. H., and F. Z. Weng, 2005:One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from Advanced Microwave Sounding Unit (AMSU). IEEE Trans. Geosci. Remote Sens., 43, 1087-1095, doi:10.1109/TGRS.2004.843211
Liu, Q. H., and F. Z. Weng, 2006:Radiance assimilation in studying Hurricane Katrina. Geophys. Res. Lett., 33, L22811, doi:10.1029/2006GL027543
Liu, Y. B., D. L. Zhang, and M. K. Yau, 1999:A multiscale numerical study of Hurricane Andrew (1992). Part Ⅱ:Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597-2616, doi:10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2
Rosenkranz, P. W., and C. D. Barnet, 2006:Microwave radiative transfer model validation. J. Geophys. Res. Atmos., 111, D09S07, doi:10.1029/2005JD006008
Saunders, R., P. Rayer, P. Brunel, et al., 2007:A comparison of radiative transfer models for simulating Atmospheric Infrared Sounder (AIRS) radiances. J. Geophys. Res. Atmos., 112, D01S90, doi:10.1029/2006JD007088
Stern, D. P., and F. Q. Zhang, 2016:The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73, 3305-3328, doi:10.1175/JAS-D-15-0328.1
Tian, X. X., and X. L. Zou, 2016:ATMS-and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm. J. Geophys. Res. Atmos., 121, 12630-12646, doi:10.1002/2016JD025042
Vigh, J. L., and W. H. Schubert, 2009:Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 3335-3350, doi:10.1175/2009JAS3092.1
Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010:Genesis of pre-Hurricane Felix (2007). Part Ⅱ:Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 1730-1744, doi:10.1175/2010JAS3435.1
Weng, F. Z., 2007:Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 3799-3807, doi:10.1175/2007JAS2112.1
Weng, F. Z., and H. Yang, 2016:Validation of ATMS calibration accuracy using Suomi NPP pitch maneuver observations. Remote Sens., 8, 332, doi:10.3390/rs8040332
Weng, F. Z., and X. L. Zou, 2014:30-year atmospheric temperature record derived by one-dimensional variational data assimilation of MSU/AMSU-A observations. Climate Dyn., 43, 1857-1870, doi:10.1007/s00382-013-2012-5
Weng, F., X. Zou, X. Wang, et al., 2012:Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropi-cal cyclone applications. J. Geophys. Res. Atmos., 117, D19112, doi:10.1029/2012JD018144
Weng, F. Z., X. L. Zou, N. H. Sun, et al., 2013:Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J. Geophys. Res. Atmos., 118, 11,187-11,200, doi:10.1002/jgrd.50840
Yang, H., and F. Z. Weng, 2016:Corrections for on-orbit ATMS lunar contamination. IEEE Trans. Geosci. Remote Sens., 54, 1918-1924, doi:10.1109/TGRS.2015.2490198
Zhu, T., and F. Z. Weng, 2013:Hurricane Sandy warm-core structure observed from Advanced Technology Microwave Sounder. Geophys. Res. Lett., 40, 3325-3330, doi:10.1002/grl.50626
Zou, X. L., F. Z. Weng, and H. Yang, 2014a:Connecting the time series of microwave sounding observations from AMSU to ATMS for long-term monitoring of climate. J. Atmos. Oceanic Technol., 31, 2206-2222, doi:10.1175/JTECH-D-13-00232.1
Zou, X. L., L. Lin, and F. Z. Weng, 2014b:Absolute calibration of ATMS upper level temperature sounding channels using GPS RO observations. IEEE Trans. Geosci. Remote Sens., 52, 1397-1406, doi:10.1109/TGRS.2013.2250981 |
|
|
|