|
|
Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product |
Rui JIA, Yuzhi LIU, Shan HUA, Qingzhe ZHU, and Tianbin SHAO |
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000 |
|
|
Abstract Based on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the daytime CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aerosol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth's Radiant Energy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aerosol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day-1 depending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The significant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.
|
Received: 12 April 2018
Final Form: 08 July 2018
Published Online: 19 October 2018
|
Supported by: Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA2006010301), National Natural Science Foundation of China (91737101, 41475095, and 41405010), Fundamental Research Funds for Central Universities (lzujbky-2017-63), and China 111 Project (B13045) |
Corresponding Authors:
Yuzhi LIU
E-mail: liuyzh@lzu.edu.cn
|
|
|
|
Ackerman, A. S., O. B. Toon, D. E. Stevens, et al., 2000:Reduction of tropical cloudiness by soot. Science, 288, 1042-1047, doi:10.1126/science.288.5468.1042
Adams, A. M., J. M. Prospero, and C. D. Zhang, 2012:CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents. J. Climate, 25, 6862-6879, doi:10.1175/JCLI-D-11-00672.1
Albrecht, B. A., 1989:Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230, doi:10.1126/science.245.4923.1227
Charlson, R. J., S. E. Schwartz, J. M. Hales, et al., 1992:Climate forcing by anthropogenic aerosols. Science, 255, 423-430, doi:10.1126/science.255.5043.423
Chen, B., J. Huang, P. Minnis, et al., 2010:Detection of dust aerosol by combining CALIPSO active lidar and passive ⅡR measurements. Atmos. Chem. Phys., 10, 4241-4251, doi:10.5194/acp-10-4241-2010
Chen, B., P. Zhang, B. D. Zhang, et al., 2014:An overview of passive and active dust detection methods using satellite measurements. J. Meteor. Res., 28, 1029-1040, doi:10.1007/s13351-014-4032-4
Chen, S. Y., J. P. Huang, C. Zhao, et al., 2013:Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau:A case study in the summer of 2006. J. Geophys. Res. Atmos., 118, 797-812, doi:10.1002/jgrd.50122
Choi, I. J., T. Iguchi, S. W. Kim, et al., 2014:The effect of aerosol representation on cloud microphysical properties in Northeast Asia. Meteor. Atmos. Phys., 123, 181-194, doi:10.1007/s00703-013-0288-y
D'Almeida, G. A., P. Koepke, and E. P. Shettle, 2005:Atmospheric aerosols:Global climatology and radiative characteristics. J. Med. Microbiol., 54, 55-61
Fu, Q., and K. N. Liou, 1992:On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139-2156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
Fu, Q., and K. N. Liou, 1993:Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008-2025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
Garnier, A., J. Pelon, M. A. Vaughan, et al., 2015:Lidar multiple scattering factors inferred from CALIPSO lidar and ⅡR retrievals of semi-transparent cirrus cloud optical depths over oceans. Atmos. Meas. Tech., 8, 2759-2774, doi:10.5194/amt-8-2759-2015
Ge, J. M., J. P. Huang, C. P. Xu, et al., 2014:Characteristics of Taklimakan dust emission and distribution:A satellite and reanalysis field perspective. J. Geophys. Res. Atmos., 119, 11772-11783, doi:10.1002/2014JD022280
Guo, J. P., X. Y. Zhang, Y. R. Wu, et al., 2011:Spatiotemporal variation trends of satellite-based aerosol optical depth in China during 1980-2008. Atmos. Environ., 45, 6802-6811, doi:10.1016/j.atmosenv.2011.03.068
Guo, J. P., H. Liu, F. Wang, et al., 2016:Three-dimensional structure of aerosol in China:A perspective from multi-satellite observations. Atmos. Res., 178-179, 580-589, doi:10.1016/j.atmosres.2016.05.010
Henderson, D. S., T. L'Ecuyer, G. Stephens, et al., 2013:A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853-871, doi:10.1175/JAMC-D-12-025.1
Hess, M., P. Koepke, and I. Schult, 1998:Optical properties of aerosols and clouds:The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831-844, doi:10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
Huang, J., Q. Fu, J. Su, et al., 2009:Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011-4021, doi:10.5194/acp-9-4011-2009
Huang, J. P., P. Minnis, Y. H. Yi, et al., 2007:Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, doi:10.1029/2007GL029938
Huang, J. P., P. Minnis, B. Chen, et al., 2008:Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos., 113, D23212, doi:10.1029/2008JD010620
Huang, J. P., T. H. Wang, W. C. Wang, et al., 2014:Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11398-11416, doi:10.1002/2014JD021796
Jia, R., Y. Z. Liu, B. Chen, et al., 2015:Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123, 210-219, doi:10.1016/j.atmosenv.2015.10.038
Kim, D.-H., B. J. Sohn, T. Nakajima, et al., 2005:Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements. J. Geophys. Res. Atmos., 110, D10S22, doi:10.1029/2004JD004678
Kovalev, V. A., W. M. Hao, and C. Wold, 2007:Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles. Appl. Opt., 46, 8627-8634, doi:10.1364/AO.46.008627
Kuang, Y., C. S. Zhao, J. C. Tao, et al., 2015:Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect. Atmos. Chem. Phys., 15, 5761-5772, doi:10.5194/acp-15-5761-2015
Kuhlmann, J., and J. Quaas, 2010:How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data. Atmos. Chem. Phys., 10, 4673-4688, doi:10.5194/acp-10-4673-2010
Lau, K. M., M. K. Kim, and K. M. Kim, 2006:Asian summer monsoon anomalies induced by aerosol direct forcing:The role of the Tibetan Plateau. Climate Dyn., 26, 855-864, doi:10.1007/s00382-006-0114-z
Lau, W. K. M., 2016:The aerosol-monsoon climate system of Asia:A new paradigm. J. Meteor. Res., 30, 1-11, doi:10.1007/s13351-015-5999-1
Lau, W. K. M., and K.-M. Kim, 2010:Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys. Res. Lett., 37, L16705, doi:10.1029/2010GL043255
Lau, W. K. M., M.-K. Kim, K.-M. Kim, et al., 2010:Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5, 025204, doi:10.1088/1748-9326/5/2/025204
L'Ecuyer, T. S., N. B. Wood, T. Haladay, et al., 2008:Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res. Atmos., 113, D00A15, doi:10.1029/2008JD009951
Li, H. J., W. Zheng, and Q. Gong, 2013:An analysis on detection of a sand-dust weather event over Taklimakan Desert based on polarization micro-pulse lidar. Desert Oasis Meteor., 7, 1-5. (in Chinese)
Li, Z. Q., J. P. Guo, A. J. Ding, et al., 2017:Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4, 810-833, doi:10.1093/nsr/nwx117
Liu, Y., Y. Sato, R. Jia, et al., 2015:Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmos. Chem. Phys., 15, 12581-12594, doi:10.5194/acp-15-12581-2015
Liu, Z. Y., D. Liu, J. P. Huang, et al., 2008a:Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys., 8, 5045-5060, doi:10.5194/acp-8-5045-2008
Liu, Z. Y., A. Omar, M. Vaughan, et al., 2008b:CALIPSO lidar observations of the optical properties of Saharan dust:A case study of long-range transport. J. Geophys. Res. Atmos., 113, D07207, doi:10.1029/2007JD008878
Müller, D., K. Franke, A. Ansmann, et al., 2003:Indo-Asian pollution during INDOEX:Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations. J. Geophys. Res. Atmos., 108, 4600, doi:10.1029/2003JD003538
Mukai, M., T. Nakajima, and T. Takemura, 2008:A study of anthropogenic impacts of the radiation budget and the cloud field in East Asia based on model simulations with GCM. J. Geophys. Res. Atmos., 113, D12211, doi:10.1029/2007JD009325
Nakajima, T., S. C. Yoon, V. Ramanathan, et al., 2007:Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in East Asia. J. Geophys. Res. Atmos., 112, D24S91, doi:10.1029/2007JD009009
Omar, A. H., D. M. Winker, M. A. Vaughan, et al., 2009:The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 1994-2014, doi:10.1175/2009JTECHA1231.1
Omar, A. H., J. L. Tackett, M. A. Vaughan, et al., 2016:Enhancements to the CALIOP aerosol subtyping and lidar ratio selection algorithms for level Ⅱ Version 4. AGU Fall Meeting, San Francisco, 12-16 December, American Geophysical Union.
Qian, Y., M. G. Flanner, L. R. Leung, et al., 2011:Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys., 11, 1929-1948, doi:10.5194/acp-11-1929-2011
Qian, Y. F., Y. Zhang, Y. Y. Huang, et al., 2004:The effects of the thermal anomalies over the Tibetan Plateau and its vicinities on climate variability in China. Adv. Atmos. Sci., 21, 369-381, doi:10.1007/BF02915565
Ramanathan, V., M. V. Ramana, G. Roberts, et al., 2007:Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575-578, doi:10.1038/nature06019
Rose, F. G., and T. P. Charlock, 2002:New Fu-Liou code tested with ARM Raman lidar and CERES in pre-CALIPSO sensitivity study. 11th Conference on Atmospheric Radiation, Ogden, Utah, USA, 7 June, Amer. Meteor. Soc.
Rosenfeld, D., S. Sherwood, R. Wood, et al., 2014:Climate effects of aerosol-cloud interactions. Science, 343, 379-380, doi:10.1126/science.1247490
Sassen, K., 1991:The polarization lidar technique for cloud research:A review and current assessment. Bull. Amer. Meteor. Soc., 72, 1848-1866, doi:10.1175/1520-0477(1991)2.0.co;2
Satheesh, S. K., V. Ramanathan, X. Li-Jones, et al., 1999:A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data. J. Geophys. Res. Atmos., 104, 27421-27440, doi:10.1029/1999JD900478
Satheesh, S. K., V. Vinoj, S. S. Babu, et al., 2009:Vertical distribution of aerosols over the east coast of India inferred from airborne LIDAR measurements. Ann. Geophys., 27, 4157-4169, doi:10.5194/angeo-27-4157-2009
Seiki, T., and T. Nakajima, 2014:Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci., 71, 833-853, doi:10.1175/JAS-D-12-0195.1
Sekiguchi, M., T. Nakajima, K. Suzuki, et al., 2003:A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res. Atmos., 108, 4699, doi:10.1029/2002JD003359
Shen, L. L., L. F. Sheng, and J. J. Chen, 2010:Preliminary analy-sis of the spatial distribution of the dust aerosol in a heavy dust storm. J. Desert Res., 30, 1483-1490. (in Chinese)
Su, J., J. P. Huang, Q. Fu, et al., 2008:Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 2763-2771, doi:10.5194/acp-8-2763-2008
Takamura, T., N. Sugimoto, A. Shimizu, et al., 2007:Aerosol radiative characteristics at Gosan, Korea, during the Atmospheric Brown Cloud East Asian Regional Experiment 2005. J. Geophys. Res. Atmos., 112, D22S36, doi:10.1029/2007JD008506
Tegen, I., A. A. Lacis, and I. Fung, 1996:The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419-422, doi:10.1038/380419a0
Toth, T. D., J. L. Zhang, J. R. Campbell, et al., 2016:Temporal variability of aerosol optical thickness vertical distribution observed from CALIOP. J. Geophys. Res. Atmos., 121, 9117-9139, doi:10.1002/2015JD024668
Twomey, S., 1977:The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
Uno, I., H. Amano, S. Emori, et al., 2001:Trans-Pacific yellow sand transport observed in April 1998. A numerical simulation. J. Geophys. Res. Atmos., 106, 18331-18344, doi:10.1029/2000JD900748
Wang, W. C., J. P. Huang, T. Zhou, et al., 2013:Estimation of radiative effect of a heavy dust storm over northwest China using Fu-Liou model and ground measurements. J. Quant. Spectrosc. Radiat. Transf., 122, 114-126, doi:10.1016/j.jqsrt.2012.10.018
Winker, D. M., M. A. Vaughan, A. Omar, et al., 2009:Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 2310-2323, doi:10.1175/2009jtecha1281.1
Wonsick, M. M., R. T. Pinker, and Y. Ma, 2014:Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations. Atmos. Chem. Phys., 14, 8749-8761, doi:10.5194/acp-14-8749-2014
Wu, G. X., X. Liu, Q. Zhang, et al., 2002:Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau. Climatic Environ. Res., 7, 184-201. (in Chinese)
Wu, G. X., J. Y. Mao, A. M. Duan, et al., 2006:Current progresses in study of impacts of the Tibetan Plateau on Asian summer climate. Acta Meteor. Sinica, 20, 144-158
Xia, X. G., P. C. Wang, Y. S. Wang, et al., 2008:Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophys. Res. Lett., 35, L16804, doi:10.1029/2008GL034981
Yang, K., Y.-Y. Chen, and J. Qin, 2009:Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13, 687-701, doi:10.5194/hess-13-687-2009
Yang, W. Y., D. Z. Ye, and G. X. Wu, 1992:The influence of the Tibetan Plateau on the thermal and circulation fields over East Asia in summer. Ⅱ:Main features of the local circulation fields and the large-scale vertical circulation fields. Chinese J. Atmos. Sci., 16, 287-301. (in Chinese)
Yasunari, T. J., P. Bonasoni, P. Laj, et al., 2010:Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory-Pyramid data and snow albedo changes over Himalayan glaciers. Atmos. Chem. Phys., 10, 6603-6615, doi:10.5194/acp-10-6603-2010
Young, S. A., and M. A. Vaughan, 2009:The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data:Algorithm description. J. Atmos. Oceanic Technol., 26, 1105-1119, doi:10.1175/2008JTECHA1221.1
Zhang, H., J. H. Ma, and Y. F. Zheng, 2010:Modeling study of the global distribution of radiative forcing by dust aerosol. Acta Meteor. Sinica, 24, 558-570
Zhou, L. B., J. H. Zhu, H. Zou, et al., 2013:Atmospheric moisture distribution and transport over the Tibetan Plateau and the impacts of the South Asian summer monsoon. Acta Meteor. Sinica, 27, 819-831, doi:10.1007/s13351-013-0603-z
Zhu, Y. X., Y. H. Ding, and H. G. Xu, 2008:Decadal relationship between atmospheric heat source and winter-spring snow cover over the Tibetan Plateau and rainfall in East China. Acta. Meteor. Sinica, 22, 303-316 |
|
|
|