|
|
How Does Tropical Cyclone Size Affect the Onset Timing of Secondary Eyewall Formation? |
Liang GUAN1,2 and Xuyang GE1 |
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Nanjing University of Information Science & Technology, Nanjing 210044;
2. Shanghai Meteorological Science and Technology Service Center, Shanghai 200030 |
|
|
Abstract By using idealized numerical simulations, the impact of tropical cyclone size on secondary eyewall formation (SEF) is examined. Both unbalanced boundary layer and balanced processes are examined to reveal the underlying mechanism. The results show that a tropical cyclone (TC) with a larger initial size favors a quicker SEF and a larger outer eyewall. For a TC with a larger initial size, it will lead to a stronger surface entropy flux, and thus more active outer convection. Meanwhile, a greater inertial stability helps the conversion from diabatic heating to kinetic energy. Furthermore, the progressively broadening of the tangential wind field will induce significant boundary layer imbalances. This unbalanced boundary layer process results in a supergradient wind zone that acts as an important mechanism for triggering and maintaining deep convection. In short, different behaviors of balanced and unbalanced processes associated with the initial wind profile lead to different development rates of the secondary eyewall.
|
Received: 09 March 2017
Published Online: 19 October 2017
|
Supported by: Supported by the National Natural Science Foundation of China (41575056, 41730961, and 41775058) and National (Key) Basic Research and Development (973) Program of China (2015CB452803) |
Corresponding Authors:
Xuyang GE
E-mail: xuyang@nuist.edu.cn
|
|
|
|
Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 3216-3230, doi:10.1175/JAS-D-12-0318.1.
Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947-957, doi:10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Gao, S., S. N. Zhai, B. Q. Chen, et al., 2017: Water budget and intensity change of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 145, 3009-3023, doi:10.1175/MWR-D-17-0033.1.
Ge, X. Y., 2015: Impacts of environmental humidity on concentric eyewall structure. Atmos. Sci. Let., 16, 273-278, doi:10.1002/asl2.553.
Ge, X. Y., L. Guan, and S. W. Zhou., 2016: Impacts of initial structure of tropical cyclone on secondary eyewall formation. Atmos. Sci. Let., 17, 569-574, doi:10.1002/asl.707.
Hill, A. K, and Lackmann G. M., 2009: Influence of environmen-tal humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294-3315, doi:10.1175/2009MWR2679.1.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.
Houze, R. A. Jr., J. Cetrone, S. R. Brodzik, et al., 2006: The hurricane rainband and intensity change experiment (RAINEX): Observations and modeling of hurricanes Katrina, Ophelia, and Rita (2005). Bull. Amer. Meteor. Soc., 87, 48-55, doi:10.1175/BAMS-87-11-1503.
Houze, R. A. Jr., S. S. Chen, B. F. Smull, et al., 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235-1239, doi:10.1126/science.1135650.
Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part Ⅱ: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662-674, doi:10.1175/JAS-D-11-0114.1.
Kain, J. S., and Fritsch J. M., 1993: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49, 93-106, doi:10.1007/BF01025402.
Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?. J. Atmos. Sci., 70, 2808-2830, doi:10.1175/JAS-D-13-046.1.
Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876-892, doi:10.1175/2008MWR2701.1.
Kossin, J. P., and M. Sitkowski, 2012: Predicting hurricane intensity and structure changes associated with eyewall replacement cycles. Wea. Forecasting, 27, 484-488, doi:10.1175/WAF-D-11-00106.1.
Kuo, H.-C., L.-Y. Lin, C.-P. Chang, et al., 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722-2734, doi:10.1175/JAS3286.1.
Kuo, H.-C., W. H. Schubert, C.-L. Tsai, et al., 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183-5198, doi:10.1175/2008MWR2378.1.
Kuo, H.-C., C.-P. Chang, Y.-T. Yang, et al., 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 3758-3770, doi:10.1175/2009MWR2850.1.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065-1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Menelaou, K., M. K. Yau, and Y. Martinez, 2014: Some aspects of the problem of secondary eyewall formation in idealized three-dimensional nonlinear simulations. J. Adv. Mod. Earth Syst., 63, 491-512, doi:10.1002/2014MS000316.
Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682, doi:10.1029/97JD00237.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435-465, doi:10.1002/qj.49712353810.
Nong, S. Y., and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 3323-3338, doi:10.1256/qj.01.132.
Qiu, X., and Z. M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953-974, doi:10.1175/JAS-D-12-084.1.
Rozoff, C. M., D. S. Nolan, J. P. Kossin, et al., 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 2621-2643, doi:10.1175/JAS-D-11-0326.1.
Shapiro, L. J., and Willoughby H. E., 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378-394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.
Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 3829-3847, doi:10.1175/MWR-D-11-00034.1.
Sun, Y. Q., Y. X. Jiang, B. K. Tan, et al., 2013: The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J. Atmos. Sci., 70, 3818-3837, doi:10.1175/JAS-D-13-044.1.
Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi:10.1029/2007JD008897.
Wang, X. B., Y. M. Ma, and N. E. Davidson, 2013: Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 1317-1341, doi:10.1175/JAS-D-12-017.1.
Wang, H., C.-C. Wu, and Y. Q. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 3911-3930, doi:10.1175/JAS-D-15-0146.1.
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.
Willoughby, H. E., H. L. Jin, S. J. Lord, et al., 1984: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41, 1169-1186, doi:10.1175/1520-0469(1984)041<1169:HSAEAS>2.0.CO;2.
Yang, Y. T., H. C. Kuo, E. A. Hendricks, et al., 2013: Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon. Wea. Rev., 141, 2632-2648, doi:10.1175/MWR-D-12-00251.1.
Yang, Y. T., E. A. Hendricks, H.-C. Kuo, et al., 2014: Long-lived concentric eyewalls in Typhoon Soulik (2013). Mon. Wea. Rev., 142, 3365-3371, doi:10.1175/MWR-D-14-00085.1.
Zhou, X. Q., and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972-988, doi:10.1175/2011JAS3575.1.
Zhou, X. Q., B. Wang, X. Y. Ge, et al., 2011: Impact of secondary eyewall heating on tropical cyclone intensity change. J. Atmos. Sci., 68, 450-456, doi:10.1175/2010JAS3624.1.
Zhou, X. Q., and B. Wang, 2013: Large-scale influences on secondary eyewall size. J. Geophys. Res., 118, 11088-11097, doi:10.1002/jgrd.50605.
Zhu, Z. D., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res., 119, 8049-8072, doi:10.1002/2014JD021899. |
|
|
|