Reducing the Prediction Uncertainties of High-Impact Weather and Climate Events: An Overview of Studies at LASG

Wansuo DUAN^{1,2}, and Rong FENG^{1}

1. State Key Laboratory of Numerical Modeling for Atmosphere Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
2. University of Chinese Academy of Sciences, Beijing 100049

Abstract This paper summarizes recent progress at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences in studies on targeted observations, data assimilation, and ensemble prediction, which are three effective strategies to reduce the prediction uncertainties and improve the forecast skill of weather and climate events. Considering the limitations of traditional targeted observation approaches, LASG researchers have developed a conditional nonlinear optimal perturbation-based targeted observation strategy to optimize the design of the observing network. This strategy has been employed to identify sensitive areas for targeted observations of the El Niño-Southern Oscillation, Indian Ocean dipole, and tropical cyclones, and has been demonstrated to be effective in improving the forecast skill of these events. To assimilate the targeted observations into the initial state of a numerical model, a dimension-reduced-projection-based four-dimensional variational data assimilation (DRP-4DVar) approach has been proposed and is used operationally to supply accurate initial conditions in numerical forecasts. The performance of DRP-4DVar is good, and its computational cost is much lower than the standard 4DVar approach. Besides, ensemble prediction, which is a practical approach to generate probabilistic forecasts of the future state of a particular system, can be used to reduce the prediction uncertainties of single forecasts by taking the ensemble mean of forecast members. In this field, LASG researchers have proposed an ensemble forecast method that uses nonlinear local Lyapunov vectors (NLLVs) to yield ensemble initial perturbations. Its application in simple models has shown that NLLVs are more useful than bred vectors and singular vectors in improving the skill of the ensemble forecast. Therefore, NLLVs represent a candidate for possible development as an ensemble method in operational forecasts. Despite the considerable efforts made towards developing these methods to reduce prediction uncertainties, much challenging but highly important work remains in terms of improving the methods to further increase the skill in forecasting such weather and climate events.

Received: 13 June 2016
Final Form: 09 September 2016
Published Online: 09 September 2016

Supported by: Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201306018) and National Na-tural Science Foundation of China (41525017 and 41506032)

Corresponding Authors:
FENG Rong
E-mail: fengrong@lasg.iap.ac.cn

Wansuo DUAN, Rong FENG, 2017: Reducing the Prediction Uncertainties of High-Impact Weather and Climate Events: An Overview of Studies at LASG. J. Meteor. Res., 31(1): 224-235, doi: 10.1007/s13351-016-6099-6.

Aberson, S. D., 2010:10 years of hurricane synoptic surveillance(1997-2006). Mon. Wea. Rev., 138, 1536-1549.
Ashok, K., S. K. Behera, S. A. Rao, et al., 2007:El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007.
Bishop, C. H., and Z. Toth, 1999:Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 1748-1765.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001:Adaptive sampling with the ensemble transform Kalman filter. Part I:Theoretical aspects. Mon. Wea. Rev., 129, 420-436.
Blanke, B., J. D. Neelin, and D. Gutzler, 1997:Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10, 1473-1486.
Buizza, R., 1997:Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 125, 99-119.
Buizza, R., and A. Montani, 1999:Targeting observations using singular vectors. J. Atmos. Sci., 56, 2965-2985.
Chen, B. Y., M. Mu, and X. H. Qin, 2013:The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts. Mon. Wea. Rev., 141, 2669-2682.
Chen, L., 2015:Similarity of optimally growing initial errors and optimal precursors for ENSO and its application for recognizing sensitive area. Ph. D. dissertation, University of Chinese Academy of Sciences, Beijing, 151 pp. (in Chinese)
Chevallier, F., P. Lopez, A. M. Tompkins, et al., 2004:The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Quart. J. Roy. Meteor. Soc., 130, 917-932.
Chou, K. H., C. C. Wu, P. H. Lin, et al., 2011:The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 1728-1743.
Descamps, L., and O. Talagrand, 2007:On some aspects of the definition of initial conditions for ensemble prediction. Mon. Wea. Rev., 135, 3260-3272.
Duan, W. S., and R. Zhang, 2010:Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model Adv. Atmos. Sci., 27, 1003-1013.
Duan, W. S., and F. F. Zhou, 2013:Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A, 65, 18452.
Duan, W. S., and P. Zhao, 2015:Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 2351-2367.
Duan, W. S., and J. Y. Hu, 2016:The initial errors that induce a significant "spring predictability barrier" for El Niño events and their implications for target observation:Results from an earth system model.Climate Dyn.,46, 3599-3615, doi:10.1007/s00382-015-2789-5.
Duan, W. S., X. C. Liu, K. Y. Zhu, et al., 2009:Exploring the initial errors that cause a significant "spring predictability barrier" for El Niño events. J. Geophys. Res., 114, C04022.
Duan, W. S., B. Tian, and H. Xu, 2014:Simulations of two types of El Niño events by an optimal forcing vector approach. Climate Dyn., 43, 1677-1692.
Duan, W. S., P. Zhao, J. Y. Hu, et al., 2016:The role of nonlinear forcing singular vector tendency error in causing the "Spring Predictability Barrier" for ENSO. J. Meteor. Res., 30, 853-866, doi:10.1007/s13351-016-6011-4.
Evensen, G., 1994:Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162.
Feng, J., R. Q. Ding, D. Q. Liu, et al., 2014:The application of nonlinear local Lyapunov vectors to ensemble predictions in Lorenz systems. J. Atmos. Sci., 71, 3554-3567.
Feng, R., and W. S. Duan, 2014:The spatial patterns of initial errors related to the "winter predictability barrier" of the Indian Ocean dipole. Atmos. Oceanic Sci. Lett., 7, 406-410, doi:10.3878/jissn.1674-2834.14.0018.
Feng, R., W. S. Duan, and M. Mu, 2016:Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions. Climate Dyn., doi:10.1007/s00382-016-3134-3.
Gauthier, P., and J. N. Thépaut, 2001:Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Wea. Rev., 129, 2089-2102.
Gauthier, P., M. Tanguay, S. Laroche, et al., 2007:Extension of 3DVAR to 4DVAR:Implementation of 4DVAR at the meteorological service of Canada. Mon. Wea. Rev., 135, 2339-2353.
Ham, Y. G., and J. S. Kug, 2012:How well do current climate models simulate two types of El Niño? Climate Dyn., 39, 383-398.
Hamill, T. M., and C. Snyder, 2002:Using improved backgrounderror covariances from an ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., 130, 1552-1572.
Honda, Y., M. Nishijima, K. Koizumi, et al., 2005:A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency:Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 3465-3475.
Houtekamer, P. L., and J. Derome, 1995:Methods for ensemble prediction. Mon. Wea. Rev., 123, 2181-2196.
International CLIVAR Project Office, 2006:Report of the Third Meeting of the CLIVAR-GOOS Indian Ocean Panel, Honolulu, USA. International CLIVAR Project Office, Southampton, UK, 32 pp.
Järvinen, H., E. Andersson, and F. Bouttier, 1999:Variational assimilation of time sequences of surface observations with serially correlated errors. Tellus A, 51, 469-488.
Kao, H. Y., and J. Y. Yu, 2009:Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615-632.
Klinker, E., F. Rabier, G. Kelly, et al., 2000:The ECMWF operational implementation of four-dimensional variational assimilation. III:Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126, 1191-1215.
Kramer, K., and H. A. Dijkstra, 2013:Optimal localized observations for advancing beyond the ENSO predictability barrier. Nonlinear Processes in Geophysics, 20, 221-230.
Kug, J. S., F. F. Jin, and S. I. An, 2009:Two types of El Niño events:Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499-1515.
Latif, M., D. Anderson, T. Barnett, et al., 1998:A review of the predictability and prediction of ENSO. J. Geophys. Res., 103(C7), 14375-14393.
Liu, C. S., Q. N. Xiao, and B. Wang, 2008:An ensemble-based four-dimensional variational Data Assimilation Scheme. Part I:Technical formulation and preliminary test. Mon. Wea. Rev., 136, 3363-3373.
Liu, J. J., 2009:A timesaving approach to four-dimensional variational data assimilation and its application in the simulation of rainstorm. Ph. D. dissertation, Beijing, University of Chinese Academy of Sciences, 139 pp.
Lorenz, E. N., 1963:Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
Masumoto, Y., W. Yu, G. Meyers, et al., 2009:Observing systems in the Indian Ocean. Proceedings of OceanObs'09:Sustained Ocean Observations and Information for Society, ESA Publication, Venice, Italy, 21-25.
McPhaden, M. J., A. J. Busalacchi, R. Cheney, et al., 1998:The tropical ocean-global atmosphere observing system:A decade of progress. J. Geophys. Res., 103(C7), 14169-14240.
McPhaden, M. J., T. Delcroix, K. Hanawa, et al., 2001:The El Niño/Southern Oscillation (ENSO) observing system. Observing the Ocean in the 21st Century. Koblinsky, C. J., and N. R. Smith, Eds., Australian Bureau of Meteorology, Melbourne, Australia, 231-246.
McPhaden, M. J., A. J. Busalacchi, and D. L. T. Anderson, 2010:A TOGA retrospective. Oceanography, 23, 86-103.
Molteni, F., and T. N. Palmer, 1993:Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269-298.
Molteni, F., R. Buizza, T. N. Palmer, et al., 1996:The new ECMWF ensemble prediction system:Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73-119.
Morss, R. E., and D. S. Battisti, 2004a:Evaluating observing requirements for ENSO prediction:Experiments with an intermediate coupled model. J. Climate, 17, 3057-3073.
Morss, R. E., and D. S. Battisti, 2004b:Designing efficient observing networks for ENSO prediction. J. Climate, 17, 3074-3089.
Mu, M., 2013:Methods, current status, and prospect of targeted observation. Sci. China (Ser. D), 56, 1997-2005.
Mu, M., W. S. Duan, and J. C. Wang, 2002:The predictability problems in numerical weather and climate prediction. Adv. Atmos. Sci., 19, 191-204.
Mu, M., W. S. Duan, and B. Wang, 2003:Conditional nonlinear optimal perturbation and its applications. Nonlinear Process in Geophysics, 10, 493-501.
Mu, M., W. S. Duan, and B. Wang, 2007:Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112(D10), D10113.
Mu, M., Q. Wang, W. S. Duan, et al., 2014a:Application of conditional nonlinear optimal perturbation to targeted observation studies of the atmosphere and ocean. J. Meteor. Res., 28, 923-933, doi:10.1007/s13351-014-4057-8.
Mu, M., Y. S. Yu, H. Xu, et al., 2014b:Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions. Theor. Appl. Climatol., 115, 461-469, doi:10.1007/s00704-013-0909-x.
Mu, M., W. S. Duan, D. K. Chen, et al., 2015:Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. National Science Review, 2, 226-236.
Palmer, T. N., R. Gelaro, J. Barkmeijer, et al., 1998:Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633-653.
Qin, X. H., and M. Mu, 2012:Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Quart. J. Roy. Meteor. Soc., 138, 185-197.
Qiu, C., and J. Chou, 2006:Four-dimensional data assimilation method based on SVD:Theoretical aspect. Theor. Appl. Climatol., 83, 51-57.
Rawlins, F., S. P. Ballard, K. J. Bovis, et al., 2007:The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347-362.
Snyder, C., 1996:Summary of an informal workshop on adaptive observations and FASTEX. Bull. Amer. Meteor. Soc., 77, 953-961.
Sun, J. Z., and Y. Zhang, 2008:Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364-2388.
Tian, B., and W. S. Duan, 2016:Comparison of the initial errors most likely to cause a spring predictability barrier for two types of El Niño events. Climate Dyn., 47, 779-792, doi:10.1007/s00382-015-2870-0.
Tian, X. J., Z. H. Xie, and A. G. Dai, 2008:An ensemble-based explicit four-dimensional variational assimilation method. J. Geophys. Res., 113(D21), doi:10.1029/2008JD010358.
Toth, Z., and E. Kalnay, 1993:Ensemble forecasting at NMC:The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317-2330.
Toth, Z., and E. Kalnay, 1997:Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297-3319.
Wang, B., J. J. Liu, S. D. Wang, et al., 2010:An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715-727, doi:10.1007/s00376-009-9122-3.
Weissmann, M., F. Harnisch, C. C. Wu, et al., 2011:The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908-920.
Williams, P. D., 2005:Modelling climate change:The role of unresolved processes. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 363, 2931-2946.
Xiao, Q. N., X. L. Zou, and B. Wang, 2000:Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128, 2252-2269.
Yu, Y. S., W. S. Duan, H. Xu, et al., 2009:Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak-Cane model. Quart. J. Roy. Meteor. Soc., 135, 2146-2160.
Yu, Y. S., M. Mu, and W. S. Duan, 2012:Does model parameter error cause a significant "Spring Predictability Barrier" for El Niño events in the Zebiak-Cane Model? J. Climate, 25, 1263-1277.
Zhang, J., 2015:Sensitive areas for targeted observation associated with ENSO Predictions and its application in the predictions of the tropical pacific climate variability. Ph. D. dissertation, Nanjing University of Information Science & Technology, Nanjing, 132 pp. (in Chinese)
Zhang, J., W. S. Duan, and X. F. Zhi, 2015:Using CMIP5 model outputs to investigate the initial errors that cause the "spring predictability barrier" for El Niño events. Sci. China (Ser. D), 58, 686-696.
Zhang, L., and Y. Q. Ni, 2005:Four-dimensional variational data assimilation experiments for a heavy rain case during the 2002 IOP in China. Adv. Atmos. Sci., 22, 300-312.
Zhang, R. H., S. E. Zebiak, R. Kleeman, et al., 2003:A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30, doi:10.1029/2003GL018010.
Zhao, Y., B. Wang, Z. Z. Ji, et al., 2005:Improved track forecasting of a typhoon reaching landfall from four-dimensional variational data assimilation of AMSU-A retrieved data. J. Geophys. Res., 110(D14), D14101, doi:10.1029/2004JD 005267.
Zou, X., and Y. H. Kuo, 1996:Rainfall assimilation through an optimal control of initial and boundary conditions in a limitedarea mesoscale model. Mon. Wea. Rev., 124, 2859-2882.