|
|
The Tibetan Plateau Surface-Atmosphere Coupling System and Its Weather and Climate Effects: The Third Tibetan Plateau Atmospheric Science Experiment |
Ping ZHAO1, Yueqing LI2, Xueliang GUO1, Xiangde XU1, Yimin LIU3, Shihao TANG4, Wenming XIAO5, Chunxiang SHI5, Yaoming MA6, Xing YU7, Huizhi LIU3, La JIA8, Yun CHEN9, Yanju LIU10, Jian LI1, Dabiao LUO8, Yunchang CAO11, Xiangdong ZHENG1, Junming CHEN1, An XIAO12, Fang YUAN5, Donghui CHEN5, Yang PANG5, Zhiqun HU1, Shengjun ZHANG1, Lixin DONG4, Juyang HU4, Shuai HAN5, and Xiuji ZHOU1 |
1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing 100081;
2. Chengdu Institute of Plateau Meteorology of the China Meteorological Administration, Chengdu 610072;
3. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
4. National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081;
5. National Meteorological Information Center, China Meteorological Administration, Beijing 100081;
6. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101;
7. Meteorological Institute of Shaanxi Province, Xi'an 710014;
8. Meteorological Observatory of Tibet Autonomous Region, Lhasa 850000;
9. National Meteorological Center, China Meteorological Administration, Beijing 100081;
10. National Climate Center, China Meteorological Administration, Beijing 100081;
11. Meteorological Observation Center, China Meteorological Administration, Beijing 100081;
12. Jiangxi Meteorological Observatory, Nanchang 330096 |
|
|
Abstract The Tibetan Plateau (TP) is a key area affecting forecasts of weather and climate in China and occurrences of extreme weather and climate events over the world. The China Meteorological Administration, the National Natural Science Foundation of China, and the Chinese Academy of Sciences jointly initiated the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-Ⅲ) in 2013, with an 8-10-yr implementation plan. Since its preliminary field measurements conducted in 2013, routine automatic sounding systems have been deployed at Shiquanhe, Gaize, and Shenzha stations in western TP, where no routine sounding observations were available previously. The observatio-nal networks for soil temperature and soil moisture in the central and western TP have also been established. Meanwhile, the plateau-scale and regional-scale boundary layer observations, cloud-precipitation microphysical observations with multiple radars and aircraft campaigns, and tropospheric-stratospheric air composition observations at multiple sites, were performed. The results so far show that the turbulent heat exchange coefficient and sensible heat flux are remarkably lower than the earlier estimations at grassland, meadow, and bare soil surfaces of the central and western TP. Climatologically, cumulus clouds over the main body of the TP might develop locally instead of originating from the cumulus clouds that propagate northward from South Asia. The TIPEX-Ⅲ observations up to now also reveal diurnal variations, macro-and microphysical characteristics, and water-phase transition mechanisms, of cumulus clouds at Naqu station. Moreover, TIPEX-Ⅲ related studies have proposed a maintenance mechanism responsible for the Asian "atmospheric water tower" and demonstrated the effects of the TP heating anomalies on Afri-can, Asian, and North American climates. Additionally, numerical modeling studies show that the Γ distribution of raindrop size is more suitable for depicting the TP raindrop characteristics compared to the M-P distribution, the overestimation of sensible heat flux can be reduced via modifying the heat transfer parameterization over the TP, and considering climatic signals in some key areas of the TP can improve the skill for rainfall forecast in the central and eastern parts of China. Furthermore, the TIPEX-Ⅲ has been promoting the technology in processing surface observations, soundings, and radar observations, improving the quality of satellite retrieved soil moisture and atmospheric water vapor content products as well as high-resolution gauge-radar-satellite merged rainfall products, and facilitating the meteorological monitoring, forecasting, and data sharing operations.
|
Received: 14 November 2018
Published Online: 25 June 2019
|
Supported by: Supported by the China Meteorological Administration Special Public Welfare Research Fund for The Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-Ⅲ)—Boundary Layer and Tropospheric Observations (GYHY201406001) |
Corresponding Authors:
Ping ZHAO
E-mail: zhaop@cma.gov.cn
|
|
|
|
Bai, B. R., and Z. Y. Hu, 2016:Significance of the thermal effects of the Qinghai-Xizang Plateau to the onset of plateau summer monsoon. Plateau Meteor., 35, 329-336. (in Chinese)
Boos, W. R., and Z. M. Kuang, 2010:Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218-222, doi:10.1038/nature08707
Chang, Y., and X. L. Guo, 2016:Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chinese Sci. Bull., 61, 1706-1720, doi:10.1360/N972015-01292. (in Chinese)
Chen, L. S., X. D. Xu, and S. Q. Yu, 1999:The second Tibetan Plateau field experiment:Air-land process and planetary boundary layer observational study. Ann. Rep. Chinese Acad. Meteor. Sci., 15-16
Chen, L. X., 1999:China-Japan cooperative research on Asian monsoon mechanisms. Ann. Rep. Chinese Acad. Meteor. Sci., 26-26
Chen, X. L., T. J. Zhou, and L. W. Zou, 2013:Variation characteristics of the Asian-Pacific Oscillation in boreal summer as simulated by the LASG/IAP climate system model FGOALS_gl. Acta Meteor. Sinica, 71, 23-37, doi:10.11676/qxxb2013.002. (in Chinese)
Chen, X. L., Y. M. Liu, and G. X. Wu, 2017:Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau. Adv. Atmos. Sci., 34, 1447-1460, doi:10.1007/s00376-017-6326-9
Chen, Y. L., Y. F. Fu, T. Xian, et al., 2017:Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat. Int. J. Climatol., 37, 4043-4052, doi:10.1002/joc.4992
Cong, C., W. L. Li, and X. J. Zhou, 2002:Mass exchange between the stratosphere and troposphere over the Tibetan Plateau and its adjacent region. Chinese Sci. Bull., 46, 1914-1918
Dong, W. H., Y. L. Lin, J. S. Wright, et al., 2016:Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun., 7, 10,925, doi:10.1038/ncomms10925
Duan, A. M., G. X. Wu, Y. M. Liu, et al., 2012:Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci., 29, 978-992, doi:10.1007/s00376-012-1220-y
Feng, L., and T. J. Zhou, 2012:Water vapor transport for summer precipitation over the Tibetan Plateau:Multidata set analysis. J. Geophys. Res. Atmos., 117, D20114, doi:10.1029/2011JD017012
Gao, W. H., C. H. Sui, J. W. Fan, et al., 2016:A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations. J. Geophys. Res. Atmos., 121, 13735-13752, doi:10.1002/2015JD024196
Gao, W. H., L. P. Liu, J. Li, et al., 2018:The microphysical properties of convective precipitation over the Tibetan Plateau by a subkilometer resolution cloud-resolving simulation. J. Geophys. Res. Atmos., 123, 3212-3227, doi:10.1002/2017JD027812
Guo, Y. P., 2013:The changing characteristics of water cycle over the Qinghai–Xizang Plateau in last 40 years. Master dissertation, Lanzhou University, Lanzhou, China, 77 pp. (in Chinese)
Han, C. B., Y. M. Ma, Z. B. Su, et al., 2015:Estimates of effective aerodynamic roughness length over mountainous areas of the Tibetan Plateau. Quart. J. Roy. Meteor. Soc., 141, 1457-1465, doi:10.1002/qj.2462
Han, C. B., Y. M. Ma, X. L. Chen, et al., 2017:Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012. Int. J. Climatol., 37, 4757-4767, doi:10.1002/joc.5119
Han, Y. Z., W. Q. Ma, Y. M. Ma, et al., 2019:Variations of surface heat fluxes over the Tibetan Plateau before and after the onset of the South Asian summer monsoon during 1979-2016. J. Meteor. Res., 33, 491-500, doi:10.1007/s13351-019-8616-x
He, B., G. X. Wu, Y. M. Liu, et al., 2015:Astronomical and hydrological perspective of mountain impacts on the Asian summer monsoon. Sci. Rep., 5, 17586, doi:10.1038/srep17586
Hong, J. C., J. P. Guo, J. Du, et al., 2016:An observational study on the vertical structure of the upper troposphere and lower stratosphere in Gaize of Tibet during the rainy season. Acta Meteor. Sinica, 74, 827-836, doi:10.11676/qxxb2016.055. (in Chinese)
Hu, H., Y. C. Cao, C. Yin, et al., 2018:A comparative analysis of precipitable water vapor in the Tibetan Plateau. Acta Meteor. Sinica, 76, 1029-1039, doi:10.11676/qxxb2018.055. (in Chinese)
Hu, L., D. F. Deng, S. T. Gao, et al., 2016:The seasonal variation of Tibetan Convective Systems:Satellite observation. J. Geophys. Res. Atmos., 121, 5512-5525, doi:10.1002/2015JD024390
Hu, L., D. F. Deng, X. D. Xu, et al., 2017:The regional differences of Tibetan Convective Systems in boreal summer. J. Geophys. Res. Atmos., 122, 7289-7299, doi:10.1002/2017JD026681
Hu, Q., D. B. Jiang, and G. Z. Fan, 2014:Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau. Chinese J. Atmos. Sci., 38, 924-938, doi:10.3878/j.issn.1006-9895.2013.13197. (in Chinese)
Kim, Y. S., T. Shibata, Y. Iwasaka, et al., 2003:Enhancement of aerosols near the cold tropopause in summer over Tibetan Plateau:Lidar and balloonborne measurements in 1999 at Lhasa, Tibet, China. Proceedings of SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring Ⅲ, SPIE, Hangzhou, China, 496-503, doi:10.1117/12.466090.
Li, B., M. Zhang, S. H. Tang, et al., 2018:Variations of soil moisture over Nagqu at different time scales based on network observations. Acta Meteor. Sinica, 76, 1040-1052, doi:10.11676/qxxb2018.057. (in Chinese)
Li, B., L. Yang, and S. H. Tang, 2019:Intraseasonal variations of summer convection over the Tibetan Plateau revealed by geostationary satellite FY-2E in 2010-14. J. Meteor. Res., 33, 478-490, doi:10.1007/s13351-019-8610-3
Li, J., 2018:Hourly station-based precipitation characteristics over the Tibetan Plateau. Int. J. Climatol., 38, 1560-1570, doi:10.1002/joc.5281
Li, J., Y. Q. Li, X. W. Jiang, et al., 2016:Characteristics of land-atmosphere energy exchanges over complex terrain area of southeastern Tibetan Plateau under different synoptic conditions. Chinese J. Atmos. Sci., 40, 777-791, doi:10.3878/j.issn.1006-9895.1509.15197. (in Chinese)
Li, J. X., Q. Bao, Y. M. Liu, et al., 2017:Evaluation of the computational performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL) on a high-performance computer. Atmos. Ocean. Sci. Lett., 10, 329-336, doi:10.1080/16742834.2017.1331111
Li, L., R. H. Zhang, M. Wen, et al., 2014:Effect of the atmosphe-ric heat source on the development and eastward movement of the Tibetan Plateau vortices. Tellus A, 66, 24451, doi:10.3402/tellusa.v66.24451
Li, R. Q., S. H. Lyu, B. Han, et al., 2012:Preliminary comparison and analyses of air temperature at 2-m height between three reanalysis datasets and observation in the east of Qinghai-Xiang Plateau. Plateau Meteor., 31, 1488-1502. (in Chinese)
Li, X. Z., X. Z. Tang, S. H. Li, et al., 2018:Impact of the spring sensible heat flux over the Tibetan Plateau on summer rainfall over East China and its role in rainfall prediction. Acta Meteor. Sinica, 76, 930-943, doi:10.11676/qxxb2018.061. (in Chinese)
Li, Y. Q., and X. D. Xu, 2016:A review of the research and observing experiment on Southwest China vortex. Adv. Meteor. Sci. Technol., 6, 134-140. (in Chinese)
Liu, G., P. Zhao, J. M. Chen, et al., 2015:Preceding factors of summer Asian-Pacific Oscillation and the physical mechanism for their potential influences. J. Climate, 28, 2531-2543, doi:10.1175/JCLI-D-14-00327.1
Liu, G., P. Zhao, and J. M. Chen, 2017:Possible effect of the thermal condition of the Tibetan Plateau on the interannual variability of the summer Asian-Pacific Oscillation. J. Climate, 30, 9965-9977, doi:10.1175/JCLI-D-17-0079.1
Liu, L. P., J. F. Zheng, Z. Ruan, et al., 2015:Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteor. Res., 29, 546-561, doi:10.1007/s13351-015-4208-6
Liu, Y. M., B. Hoskins, and M. Blackburn, 2007:Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan Ser. Ⅱ, 85B, 1-19, doi:10.2151/jmsj.85.1
Liu, Y. M., G. X. Wu, J. L. Hong, et al., 2012:Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing:Ⅱ. Change. Climate Dyn., 39, 1183-1195, doi:10.1007/s00382-012-1335-y
Liu, Y. M., Z. Q. Wang, H. F. Zhuo, et al., 2017:Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing Ⅱ. Sensible heating over Tibetan-Iranian Plateau. Sci. China Earth Sci., 60, 733-744, doi:10.1007/s11430-016-9016-3
Luo, H. B., and M. Yanai, 1984:The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and moisture budgets. Mon. Wea. Rev., 112, 966-989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2
Luo, Y. L., R. H. Zhang, W. M. Qian, et al., 2011:Intercompari-son of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164-2177, doi:10.1175/2010JCLI4032.1
Ma, T. T., G. X. Wu, Y. M. Liu, et al., 2019:Impact of surface potential vorticity density forcing over the Tibetan Plateau on the South China extreme precipitation in January 2008. Part I:Data analysis. J. Meteor. Res., 33, 400-415, doi:10.1007/s13351-019-8604-1
Ma, Y. M., T. D. Yao, and J. M. Wang, 2006:Experimental study of energy and water cycle in Tibetan Plateau-The progress on the study of GAME/Tibet and CAMP/Tibet. Plateau Meteor., 25, 344-351, doi:10.3321/j.issn:1000-0534.2006.02.023. (in Chinese)
Ma, Y. M., S. C. Kang, L. P. Zhu, et al., 2008:Tibetan observation and research platform (TORP):Atmosphere-land interaction over a heterogeneous landscape. Bull. Amer. Meteor. Soc., 89, 1487-1492, doi:10.1175/1520-0477-89.10.1469
Nan, S. L., P. Zhao, S. Yang, et al., 2009:Springtime troposphe-ric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. J. Geophys. Res. Atmos., 114, D10104, doi:10.1029/2008JD011559
Nan, S. L., P. Zhao, and J. M. Chen, 2019:Variability of summertime Tibetan tropospheric temperature and associated precipitation anomalies over the central-eastern Sahel. Climate Dyn., 52, 1819-1835, doi:10.1007/s00382-018-4246-8
Pan, Y., J. X. Gu, J. J. Yu, et al., 2018:Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteor. Sinica, 76, 755-766, doi:10.11676/qxxb2018.034. (in Chinese)
Qiu, G. Q., H. Li, Y. Zhang, et al., 2013:Applicability research of planetary boundary layer parameterization scheme in WRF model over the Alpine Grassland Area. Plateau Meteor., 32, 46-55. (in Chinese)
Su, Z., P. de Rosnay, J. Wen, et al., 2013:Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos., 118, 5304-5318, doi:10.1002/jgrd.50468
Tang, J., X. L. Guo, and Y. Chang, 2018:Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau. Chinese J. Atmos. Sci., 42, 1327-1343, doi:10.3878/j.issn.1006-9895.1801.17202. (in Chinese)
Tang, J., X. L. Guo, and Y. Chang, 2019:A numerical investigation on microphysical properties of clouds and precipitation over the Tibetan Plateau in summer 2014. J. Meteor. Res., 33, 463-477, doi:10.1007/s13351-019-8614-z
Tao, S. Y., S. W. Luo, and H. C. Zhang, 1986:The Qinghai–Xizang Plateau meteorological experiment (QXPMEX) in May–August 1979. Proc. International Symposium on the Qinghai–Xizang Plateau and Mountain Meteorology, American Meteorological Society, Boston, MA, 3-13, doi:10.1007/978-1-935704-19-5_1.
Vernier, J. P., T. D. Fairlie, M. Natarajan, et al., 2015:Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J. Geophys. Res. Atmos., 120, 1608-1619, doi:10.1002/2014JD022372
Wan, L. F., D. Guo, R. Q. Liu, et al., 2017:Evaluation of WACCM3 performance in simulation of the double-core ozone valley over the Qinghai-Xizang in summer. Plateau Meteor., 36, 57-66. (in Chinese)
Wang, J. M., 1999:Land surface process experiments and interaction study in China-From HEIFE to IMGRASS and GAME-Tibet/TIPEX. Plateau Meteor., 18, 280-294, doi:10.3321/j.issn:1000-0534.1999.03.005. (in Chinese)
Wang, Y. J., X. D. Xu, H. Z. Liu, et al., 2016:Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region. J. Geophys. Res. Atmos., 121, 9540-9560, doi:10.1002/2016JD025401
Wu, C. Q., and T. J. Zhou, 2011:Characteristics of cloud radiative forcings over East Asia as simulated by the AGCMs in the CFMIP. Acta Meteor. Sinica, 69, 381-399, doi:10.11676/qxxb2011.033. (in Chinese)
Wu, G. X., and Y. S. Zhang, 1998:Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913-927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2
Wu, G. X., Y. M. Liu, Q. Zhang, et al., 2007:The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeorol., 8, 770-789, doi:10.1175/JHM609.1
Wu, G. X., Y. M. Liu, X. Zhu, et al., 2009:Multi-scale forcing and the formation of subtropical desert and monsoon. Ann. Geophys., 27, 3631-3644, doi:10.5194/angeo-27-3631-2009
Wu, G. X., Y. M. Liu, B. He, et al., 2012:Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404
Wu, G. X., H. F. Zhuo, Z. Q. Wang, et al., 2016:Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau. Sci. China Earth Sci., 59, 1996-2008, doi:10.1007/s11430-016-5328-2
Xu, A. L., J. Li, H. Peng, et al., 2017:Comparison of sensible and latent heat fluxes over farmland underlying surface of Erhai lakeside region measured from large aperture scintillometer and eddy-covariance system. Plateau Meteor., 36, 98-106. (in Chinese)
Xu, L. J., H. Z. Liu, X. D. Xu, et al., 2018:Evaluation of the WRF model in simulating atmospheric boundary layer over Nagqu area in the Tibetan Plateau. Acta Meteor. Sinica, 76, 955-967, doi:10.11676/qxxb2018.059. (in Chinese)
Xu, X. D., C. G. Lu, X. H. Shi, et al., 2008a:World water tower:An atmospheric perspective. Geophys. Res. Lett., 35, L20815, doi:10.1029/2008GL035867
Xu, X. D., R. H. Zhang, T. Koike, et al., 2008b:A new integrated observational system over the Tibetan Plateau. Bull. Amer. Me-teor. Soc., 89, 1492-1496, doi:10.1175/2008BAMS2557.1
Xu, X. D., T. L. Zhao, C. G. Lu, et al., 2014:An important mechanism sustaining the atmospheric "water tower" over the Tibetan Plateau. Atmos. Chem. Phys., 14, 11287-11295, doi:10.5194/acp-14-11287-2014
Xu, X. D., Y. J. Wang, T. L. Zhao, et al., 2015:"Harbor" effect of large topography on haze distribution in eastern China and its climate modulation on decadal variations of haze in China. Chinese Sci. Bull., 60, 1132-1143, doi:10.1360/N972014-00101. (in Chinese)
Xu, X. D., T. L. Zhao, F. Liu, et al., 2016:Climate modulation of the Tibetan Plateau on haze in China. Atmos. Chem. Phys., 16, 1365-1375, doi:10.5194/acp-16-1365-2016
Yan, X. L., J. S. Wright, X. D. Zheng, et al., 2016:Validation of Aura MLS retrievals of temperature, water vapour and ozone in the upper troposphere and lower-middle stratosphere over the Tibetan Plateau during boreal summer. Atmos. Meas. Tech., 9, 3547-3566, doi:10.5194/amt-9-3547-2016
Yan, Y. F., Y. M. Liu, and J. H. Lu, 2016:Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res. Atmos., 121, 5864-5877, doi:10.1002/2015JD024591
Yan, Y. F., X. C. Wang, and Y. M. Liu, 2018:Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions. Atmos. Ocean. Sci. Lett., 11, 44-53, doi:10.1080/16742834.2018.1395680
Yanai, M., C. F. Li, and Z. S. Song, 1992:Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan Ser. Ⅱ, 70, 319-351, doi:10.2151/jmsj1965.70.1B_319
Yang, K., and X. F. Guo, 2011:On the climatology and trend of the atmospheric heat source over the Tibetan Plateau:An experiments-supported revisit. J. Climate, 24, 1525-1541, doi:10.1175/2010JCLI3848.1
Yang, S. N., F. H. Zhang, J. Xu, et al., 2016:Mesoscale convective systems and characteristics of environment field during a heavy rainfall process in Sichuan basin. Plateau Meteor., 35, 1476-1486. (in Chinese)
Yang, Y., and R. C. Ren, 2017:On the contrasting decadal changes of diurnal surface temperature range between the Tibetan Plateau and southeastern China during the 1980s-2000s. Adv. Atmos. Sci., 34, 181-198, doi:10.1007/s00376-016-6077-z
Yao, J. C., T. J. Zhou, Z. Guo, et al., 2017:Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Climate, 30, 8825-8840, doi:10.1175/JCLI-D-16-0372.1
Ye, D. Z., and Y. X. Gao, 1979:Meteorology of the Qinghai–Xizang Plateau. Science Press, Beijing, 278 pp. (in Chinese)
Yu, W., Y. M. Liu, X. Q. Yang, et al., 2018:The interannual and decadal variation characteristics of the surface sensible heating at different elevations over the Qinghai-Tibetan Plateau and attribution analysis. Plateau Meteor., 37, 1161-1176. (in Chinese)
Yue, Z. G., X. Yu, G. H. Liu, et al., 2019:Microphysical properties of convective clouds in summer over the Tibetan Plateau from SNPP/VⅡRS satellite data. J. Meteor. Res., 33, 433-445, doi:10.1007/s13351-019-8608-x
Zeng, Y. J., Z. B. Su, R. van der Velde, et al., 2016:Blending satellite observed, model simulated, and in situ measured soil moisture over Tibetan Plateau. Remote Sens., 8, 268, doi:10.3390/rs8030268
Zhang, G., F. Chen, and Y. J. Gao, 2016:Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. J. Geophys. Res. Atmos., 121, 9576-9596, doi:10.1002/2016JD024928
Zhang, R. H., T. Koike, X. D. Xu, et al., 2012:A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project):An overview. J. Meteor. Soc. Japan Ser. Ⅱ, 90C, 1-16, doi:10.2151/jmsj.2012-C01
Zhao, P., and L. X. Chen, 2000:Study on climatic features of surface turbulent heat exchange coefficients and surface thermal sources over the Qinghai-Xizang Plateau. Acta Meteor. Sinica, 14, 13-29
Zhao, P., and L. X. Chen, 2001a:Climatic features of atmosphe-ric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Sci. China Earth Sci., 44, 858-864, doi:10.1007/BF02907098
Zhao, P., and L. X. Chen, 2001b:Role of atmospheric heat source/sink over the Qinghai-Xizang Plateau in quasi-4-year oscillation of atmosphere-land-ocean interaction. Chinese Sci. Bull., 46, 241-245, doi:10.1007/BF03187178
Zhao, P., and Y. Yuan, 2017:Characteristics of a plateau vortex precipitation event on 14 July 2014. J. Appl. Meteor. Sci., 28, 532-543, doi:10.11898/1001-7313.20170502. (in Chinese)
Zhao, P., Z. J. Zhou, and J. P. Liu, 2007:Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall:An observational investigation. J. Climate, 20, 3942-3955, doi:10.1175/JCLI4205.1
Zhao, P., X. D. Zhang, Y. F. Li, et al., 2009:Remotely modulated tropical-North Pacific ocean-atmosphere interactions by the South Asian high. Atmos. Res., 94, 45-60, doi:10.1016/j.atmosres.2009.01.018
Zhao, P., X. D. Xu, F. Chen, et al., 2018:The Third Atmospheric Scientific Experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757-776, doi:10.1175/BAMS-D-16-0050.1
Zhao, P., X. J. Zhou, J. M. Chen, et al., 2019:Global climate effects of summer Tibetan Plateau. Sci. Bull., 64, 1-3, doi:10.1016/J.scib.2018.11.019
Zheng, X. D., X. J. Zhou, J. Tang, et al., 2004:A meteorological analysis on a low tropospheric ozone event over Xining, northwestern China on 26-27 July 1996. Atmos. Environ., 38, 261-271, doi:10.1016/j.atmosenv.2003.09.063
Zhong, L. Z., R. Mu, D. L. Zhang, et al., 2015:An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J. Geophys. Res. Atmos., 120, 3274-3291, doi:10.1002/2014JD022686
Zhou, X. J., C. Luo, W. L. Li, et al., 1995:Variations of total ozone amount in China and the ozone low center over Tibetan Plateau. Chinese Sci. Bull., 40, 1396-1398. (in Chinese)
Zhou, X. J., W. L. Li, L. X. Chen, et al., 2004:Study of ozone change over Tibetan Plateau. Acta Meteor. Sinica, 62, 513-527, doi:10.11676/qxxb2004.053. (in Chinese)
Zhou, X. J., P. Zhao, J. M. Chen, et al., 2009:Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci. China Earth Sci., 52, 1679-1693, doi:10.1007/s11430-009-0194-9
Zhu, B., X. W. Hou, and H. Q. Kang, 2016:Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos., 121, 2029-2042, doi:10.1002/2015JD023857
Zhu, X. Y., Y. M. Liu, and G. X. Wu, 2012:An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Sci. China Earth Sci., 55, 779-786, doi:10.1007/s11430-012-4379-2
Zhuo, H. F., Y. M. Liu, and J. M. Jin, 2016:Improvement of land surface temperature simulation over the Tibetan Plateau and the associated impact on circulation in East Asia. Atmos. Sci. Lett., 17, 162-168, doi:10.1002/asl.638 |
|
|
|