|
|
Simulation Study of Cloud Properties Affected by Heterogeneous Nucleation Using the GRAPES_SCM during the TWP-ICE Campaign |
Zhe LI1,2, Qijun LIU1,2, Zhanshan MA1,2,3, Jiong CHEN1,2, and Qingu JIANG1,2 |
1. National Meteorological Center, China Meteorological Administration, Beijing 100081;
2. Numerical Weather Prediction Center of China Meteorological Administration, Beijing 100081;
3. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875 |
|
|
Abstract This study used the Global/Regional Assimilation and PrEdiction System Single-Column Model (GRAPES_SCM) to simulate monsoon precipitation with deep convective cloud and associated cirrus during the Tropical Warm Pool International Cloud Experiment (TWP-ICE), especially during the active and suppressed monsoon periods. Four cases with different heterogeneous nucleation parameterizations were simulated by using the ensemble method. All simulations clearly separated the active and suppressed monsoon periods, and they reproduced the major characteristics of monsoonal cloud such as the total cloud hydrometeor mixing ratio distribution,and precipitation and radiation properties. The results showed that the number concentration production rate of different heterogeneous nucleation parameterizations varied substantially under the given temperature and water vapor mixing ratio. However, ice formation and precipitation during the monsoon period were affected only slightly by the different heterogeneous nucleation parameterizations. This study also captured clear competition between different ice formation processes.
|
Received: 14 January 2019
Published Online: 26 May 2019
|
Supported by: Supported by the Youth Talent Development Program of China Meteorological Administration (201702) and National Key Research and Development Program of China (2017YFC1501406 and 2017YFA0604502) |
Corresponding Authors:
Zhe LI
E-mail: liz@cma.gov.cn
|
|
|
|
Arakawa, A., and W. H. Schubert, 1974:Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674-701, doi:10.1175/1520-0469%281974%29031<0674%3AIOACCE>2.0.CO%3B2
Bi, K., X. C. Ma, Y. B. Chen, et al., 2018:The observation of ice-nucleating particles active at temperatures above -15℃ and its implication on ice formation in clouds. J. Meteor. Res., 32, 734-743, doi:10.1007/s13351-018-7181-z
Blackadar, A. K., 1978:Modeling pollutant transfer during daytime convection. Preprints from Fourth Symposium on Turbulence, Diffusion, and Air Quality, Amer. Meteor. Soc., Reno, NV, 443-447.
Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008:New generation of multi-scale NWP system (GRAPES):General scientific design. Chinese Sci. Bull., 53, 3433-3445, doi:10.1007/s11434-008-0494-z. (in Chinese)
Cotton, W. R., G. J. Tripoli, R. M. Rauber, et al., 1986:Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658-1680, doi:10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2
Cripe, D., 1998:Single-column modeling:Sensitivity to initial conditions and divergence forcing. Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting, ARM, San Antonio, TX, 439-441.[Available on line at http://scholar.google.com/scholar?hl=en&q=Cripe%2C+D.%2C+1998%3A++Single-column+modeling%3A+Sensitivity+to+initial+conditions+and+divergence+forcing.+Proc.+Seventh+Atmospheric+Radiation+Measurement+%28ARM%29+Science+Team+Meeting%2C+San+Antonio%2C+TX%2C+ARM+Program%2C+439%E2%80%93441].
Davies, L., 2009:TWP-ICE single column model case.[Available on line at http://users.monash.edu.au/~ladavies/SCM_TWP-ICEdoc.pdf].
DeMott, P. J., K. Sassen, M. R. Poellot, et al., 2003:African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410
Deng, X., H. W. Xue, and Z. Y. Meng, 2018:The effect of ice nuclei on a deep convective cloud in South China. Atmos. Res., 206, 1-12, doi:10.1016/j.atmosres.2018.02.013
Diehl, K., and S. K. Mitra, 2015:New particle-dependent parameterizations of heterogeneous freezing processes:Sensitivity studies of convective clouds with an air parcel model. Atmos. Chem. Phys., 15, 12741-12763, doi:10.5194/acp-15-12741-2015
Du, C. H., T. van der Sar, T. X. Zhou, et al., 2017:Control and local measurement of the spin chemical potential in a magnetic insulator. Science, 357, 195-198, doi:10.1126/science.aak9611
Ekman, A. M. L., A. Engström, and C. Wang, 2007:The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud. Quart. J. Roy. Meteor. Soc., 133, 1439-1452, doi:10.1002/qj.108
Fan, J. W., T. L. Yuan, J. M. Comstock, et al., 2009:Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos., 114, D22206, doi:10.1029/2009JD012352
Fridlind, A., A. Ackerman, J. Petch, et al., 2010:ARM/GCSS/SPARC TWP-ICE CRM intercomparison study. NASA-TM-2010-215858, National Aeronautics and Space Administration, Greenbelt.[Available online at https://pubs.giss.nasa.gov/docs/2010/2010_Fridlind_fr08100v.pdf].
Garrett, T. J., and C. F. Zhao, 2006:Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787-789, doi:10.1038/nature04636
Gesso, S. D., and R. A. J. Neggers, 2018:Can we use single-column models for understanding the boundary layer cloud-climate feedback? J. Adv. Model. Earth Syst., 10, 245-261, doi:10.1002/2017MS001113
Hack, J. J., and J. A. Pedretti, 2000:Assessment of solution uncertainties in single-column modeling frameworks. J. Climate, 13, 352-365, doi:10.1175/1520-0442(2000)013<0352:AOSUIS>2.0.CO;2
Harrison, E. F., P. Minnis, B. R. Barkstrom, et al., 1990:Time dependence of the Earth's radiation fields determined from ERBS and NOAA-9 satellites. Proceedings of SPIE Volume 1299, Long-Term Monitoring of the Earth's Radiation Budget, SPIE, Orlando, FL, 222-230, doi:10.1117/12.21380.
Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992:The effect of cloud type on Earth's energy balance:Global analysis. J. Climate, 5, 1281-1304, doi:10.1175/1520-0442(1992)005<1157:TEOCTO>2.0.CO;2
Hazra, A., B. Padmakumari, R. S. Maheskumar, et al., 2016:The effect of mineral dust and soot aerosols on ice microphysics near the foothills of the Himalayas:A numerical investigation. Atmos. Res., 171, 41-55, doi:10.1016/j.atmosres.2015.12.005
Hiron, T., and A. I. Flossmann, 2015:A study of the role of the parameterization of heterogeneous ice nucleation for the modeling of microphysics and precipitation of a convective cloud. J. Atmos. Sci., 72, 3322-3339, doi:10.1175/JAS-D-15-0026.1
Hoose, C., and O. Möhler, 2012:Heterogeneous ice nucleation on atmospheric aerosols:a review of results from laboratory experiments. Atmos. Chem. Phys., 12, 9817-9854, doi:10.5194/acp-12-9817-2012
Hu, Z. J., and C. F. Yan, 1986:Numerical simulation of microphysical processes in stratiform clouds (I)-Microphysical model. J. Acad. Meteor. Sci., 1, 37-52. (in Chinese)
Hu, Z. J., and G. F. He, 1987:Numerical simulation of microprocesses in cumulonimbus clouds. (I):Microphysical model. Acta Meteor. Sinica, 45, 467-484, doi:10.11676/qxxb1987.060. (in Chinese)
Jensen, E. J., O. B. Toon, L. Pfister, et al., 1996:Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause. Geophys. Res. Lett., 23, 825-828, doi:10.1029/96GL00722
Kennedy, A. D., X. Q. Dong, B. K. Xi, et al., 2010:Evaluation of the NASA GISS single-column model simulated clouds using combined surface and satellite observations. J. Climate, 23, 5175-5192, doi:10.1175/2010JCLI3353.1
Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, Cambridge, 584 pp.
Li, Z., H. W. Xue, and F. Yang, 2013:A modeling study of ice formation affected by aerosols. J. Geophys. Res. Atmos., 118, 11213-11227, doi:10.1002/jgrd.50861
Li, Z., Y. T. Zhang, Q. J. Liu, et al., 2018:A study of the influence of microphysical processes on Typhoon Nida (2016) using a new double-moment microphysics scheme in the wea-ther research and forecasting model. J. Trop. Meteor., 24, 123-130, doi:10.16555/j.1006-8775.2018.02.001
Li, Z., Z. S. Ma, Q. J. Liu, et al., 2019:The improvement of GRAPES double moment cloud scheme and case study of cloud precipitation. Part I:Modeling study of tropical convective cloud via GRAPES_SCM. Meteor. Mon., 45, 756-765, doi:10.7519/j.issn.1000-0526. (in Chinese)
Liu, Q. J., Z. J. Hu, and X. J. Zhou, 2003:Explicit cloud schemes of HLAFS and simulation of heavy rainfall and clouds. Part Ⅱ:Simulation of heavy rainfall and clouds. J. Appl. Meteor. Sci., 14, 68-77, doi:10.3969/j.issn.1001-7313.2003.z1.009. (in Chinese)
Ma, Z. S., Q. J. Liu, C. F. Zhao, et al., 2018:Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652-667, doi:10.1002/2017MS001234
May, P. T., J. H. Mather, G. Vaughan, et al., 2008:FIELD RESEARCH:Characterizing oceanic convective cloud systems. Bull. Amer. Meteor. Soc., 89, 153-155, doi:10.1175/BAMS-89-2-153
Mei, H. X., X. Y. Shen, and W. G. Wang, 2015:Evaluation and comparison of two double-moment bulk microphysics schemes using WRF single-column model. Plateau Meteor., 34, 890-909, doi:10.7522/j.issn.1000-0534.2014.00113. (in Chinese)
Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992:New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708-721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2
Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997:Radiative transfer for inhomogeneous atmospheres:TMRR, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237
Phillips, V. T. J., P. J. Demott, and C. Andronache, 2008:An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 2757-2783, doi:10.1175/2007JAS2546.1
Pruppacher, H. R., and J. D. Klett, 1997:Microphysics of Clouds and Precipitation. Kluwer Academic Press, Dordrecht, 954 pp.
Ramage, C. S., 1971:Monsoon Meteorology. Academic Press, New York, 296 pp.
Ramanathan, V., R. D. Cess, E. F. Harrison, et al., 1989:Cloud-radiative forcing and climate:Results from the earth radiation budget experiment. Science, 243, 57-63, doi:10.1126/science.243.4887.57
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998:Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071-1107, doi:10.1002/qj.49712454804
Rossow, W. B., and R. A. Schiffer, 1991:ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 2-20, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2
Shi, R. G., Q. J. Liu, and Z. S. Ma, 2015:Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model. Meteor. Mon., 41, 272-285, doi:10.7519/j.issn.1000-0526.2015.03.002. (in Chinese)
van den Heever, S. C., G. G. Carrió, W. R. Cotton, et al., 2006:Impacts of nucleating aerosol on florida storms. Part I:Mesoscale simulations. J. Atmos. Sci., 63, 1752-1775, doi:10.1175/JAS3713.1
Varble, A., A. M. Fridlind, E. J. Zipser, et al., 2011:Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations:Precipitation and cloud structure. J. Geophys. Res. Atmos., 116, D12206, doi:10.1029/2010JD015180
Wang, D. L., G. Q. Xu, and L. H. Jia, 2013:The evaluation of cumulus parameterization schemes in GRAPES model and its improved experiments. Meteor. Mon., 39, 166-179, doi:10.7519/j.issn.1000-0526.2013.02.005. (in Chinese)
Wapler, K., T. P. Lane, P. T. May, et al., 2010:Cloud-system-resolving model simulations of tropical cloud systems observed during the tropical warm pool-international cloud experiment. Mon. Wea. Rev., 138, 55-73, doi:10.1175/2009MWR2993.1
Xie, S. C., T. Hume, C. Jakob, et al., 2010:Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 57-79, doi:10.1175/2009JCLI3071.1
Xie, S. C., X. H. Liu, C. F. Zhao, et al., 2013:Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization. J. Climate, 26, 5981-5999, doi:10.1175/JCLI-D-12-00517.1
Xue, J. S., and D. H. Chen, 2008:Scientific Design and Application of Numerical Forecasting System GRAPES. Science Press, Beijing, 383 pp. (in Chinese)
Yang, J. L., and X. S. Shen, 2011:The construction of SCM in GRAPES and its applications in two field experiment simulations. Adv. Atmos. Sci., 28, 534-550, doi:10.1007/s00376-010-0062-8
Zhang, J. C., and Q. J. Liu, 2006:Analysis of cloud schemes in simulation of short-term climatic process. Meteor. Mon., 32, 3-12, doi:10.3969/j.issn.1000-0526.2006.07.001. (in Chinese)
Zhao, C. F., and T. J. Garrett, 2015:Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557-564, doi:10.1002/2014GL062015
Zhao, C. F., Y. L. Lin, F. Wu, et al., 2018:Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophys. Res. Lett., 45, 8604-8611, doi:10.1029/2018GL079427 |
|
|
|