|
|
Evaluation of TIGGE Daily Accumulated Precipitation Forecasts over the Qu River Basin, China |
Li LIU1, Chao GAO1, Qian ZHU2, and Yue-Ping XU1 |
1. Institute of Hydrology and Water Resources, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058;
2. School of Civil Engineering, Southeast University, Nanjing 210096 |
|
|
Abstract Quantitative precipitation forecasts (QPFs) provided by three operational global ensemble prediction systems (EPSs) from the THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) archive were evaluated over the Qu River basin, China during the plum rain and typhoon seasons of 2009-13. Two post-processing methods, the ensemble model output statistics based on censored shifted gamma distribution (CSGD-EMOS) and quantile mapping (QM), were used to reduce bias and to improve the QPFs. The results were evaluated by using three incremental precipitation thresholds and multiple verification metrics. It is demonstrated that QPFs from NCEP and ECMWF presented similarly skillful forecasts, although the ECMWF QPFs performed more satisfactorily in the typhoon season and the NCEP QPFs were better in the plum rain season. Most of the verification metrics showed evident seasonal discriminations, with more satisfactory behavior in the plum rain season. Lighter precipitation tended to be overestimated, but heavier precipitation was always underestimated. The post-processed QPFs showed a significant improvement from the raw forecasts and the effects of post-processing varied with the lead time, precipitation threshold, and EPS. Precipitation was better corrected at longer lead times and higher thresholds. CSGD-EMOS was more effective for probabilistic metrics and the root-mean-square error. QM had a greater effect on removing bias according to bias and categorical metrics, but was unable to warrant reliabilities. In general, raw forecasts can provide acceptable QPFs eight days in advance. After post-processing, the useful forecasts can be significantly extended beyond 10 days, showing promising prospects for flood forecasting.
|
Received: 07 June 2018
Published Online: 26 May 2019
|
Supported by: Supported by the National Key Research and Development Program (2016YFE0122100) and National Natural Science Foundation of China (91547106) |
Corresponding Authors:
Yue-Ping XU
E-mail: yuepingxu@zju.edu.cn
|
|
|
|
Alfieri, L., F. Pappenberger, F. Wetterhall, et al., 2014:Evaluation of ensemble streamflow predictions in Europe. J. Hydrol., 517, 913-922, doi:10.1016/j.jhydrol.2014.06.035
Bougeault, P., Z. Toth, C. Bishop, et al., 2010:The THORPEX interactive grand global ensemble. Bull. Amer. Meteor. Soc., 91, 1059-1072, doi:10.1175/2010BAMS2853.1
Brier, G. W., 1950:Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1-3, doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
Cloke, H. L., and F. Pappenberger, 2009:Ensemble flood forecasting:A review. J. Hydrol., 375, 613-626, doi:10.1016/j.jhydrol.2009.06.005
Cuo, L., T. C. Pagano, and Q. J. Wang, 2011:A review of quantitative precipitation forecasts and their use in short-to medium-range streamflow forecasting. J. Hydrometeorol., 12, 713-728, doi:10.1175/2011JHM1347.1
Daoud, A. B., E. Sauquet, G. Bontron, et al., 2016:Daily quantitative precipitation forecasts based on the analogue method:Improvements and application to a French large river basin. Atmos. Res., 169, 147-159, doi:10.1016/j.atmosres.2015.09.015
Demargne, J., L. M. Wu, S. K. Regonda, et al., 2014:The science of NOAA's operational hydrologic ensemble forecast service. Bull. Amer. Meteor. Soc., 95, 79-98, doi:10.1175/BAMS-D-12-00081.1
Demirel, M. C., M. J. Booij, and Y. A. Hoekstra, 2013:Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models. Water Resour. Res., 49, 4035-4053, doi:10.1002/wrcr.20294
Duan, Q. Y., S. Sorooshian, and V. K. Gupta, 1994:Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158, 265-284, doi:10.1016/0022-1694(94)90057-4
Elkollaly, M., M. Khadr, and B. Zeidan, 2018:Drought analysis in the Eastern Nile basin using the standardized precipitation index. Environ. Sci. Pollut. Res., 25, 30772-30786, doi:10.1007/s11356-016-8347-9
Feng, L. H., and W. H. Hong, 2007:Characteristics of drought and flood in Zhejiang Province, East China:Past and future. Chinese Geogr. Sci., 17, 257-264, doi:10.1007/s11769-007-0257-9
Ferro, C. A. T., 2007:Comparing probabilistic forecasting systems with the Brier Score. Wea. Forecasting, 22, 1076-1088, doi:10.1175/WAF1034.1
Fundel, F., and M. Zappa, 2011:Hydrological ensemble forecasting in mesoscale catchments:Sensitivity to initial conditions and value of reforecasts. Water Resour. Res., 47, W09520, doi:10.1029/2010WR009996
Ganguly, A. R., and R. L. Bras, 2003:Distributed quantitative precipitation forecasting using information from radar and numerical weather prediction models. J. Hydrometeorol., 4, 1168-1180, doi:10.1175/1525-7541(2003)004<1168:DQPFUI>2.0.CO;2
Gevorgyan, A., 2013:Verification of daily precipitation amount forecasts in America by ERA-Interim model. Int. J. Climatol., 33, 2706-2712, doi:10.1002/joc.3621
Gneiting, T., A. E. Raftery, A. H. Westveld Ⅲ, et al., 2005:Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098-1118, doi:10.1175/MWR2904.1
Glahn, H. R., and D. A. Lowry, 1972:The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203-1211
Gourley, J. J., and B. E. Vieux, 2005:A method for evaluating the accuracy of quantitative precipitation estimates from a hydrologic modeling perspective. J. Hydrometeorol., 6, 115-133, doi:10.1175/JHM408.1
Hagedorn, R., R. Buizza, T. M. Hamill, et al., 2012:Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 1814-1827, doi:10.1002/qj.1895
Hamill, T. M., 2012:Verification of TIGGE multimodel and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the contiguous united states. Mon. Wea. Rev., 140, 2232-2252, doi:10.1175/MWR-D-11-00220.1
Hamill, T. M., and J. Juras, 2006:Measuring forecast skill:Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 2905-2923, doi:10.1256/qj.06.25
Hamill, T. M., and M. Scheuerer, 2018:Probabilistic precipitation forecast postprocessing using quantile mapping and rank-weighted best-member dressing. Mon. Wea. Rev., 146, 4079-4098, doi:10.1175/MWR-D-18-0147.1
Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008:Probabilis-tic forecast calibration using ECMWF and GFS ensemble reforecasts. Part Ⅱ:Precipitation. Mon. Wea. Rev., 136, 2620-2632, doi:10.1175/2007MWR2411.1
He, Y., F. Wetterhall, H. J. Bao, et al., 2010:Ensemble forecasting using TIGGE for the July-September 2008 floods in the upper Huai catchment:A case study. Atmos. Sci. Lett., 11, 132-138, doi:10.1002/asl.270
Hemri, S., M. Scheuerer, F. Pappenberger, et al., 2014:Trends in the predictive performance of raw ensemble weather forecasts. Geophys. Res. Lett., 41, 9197-9205, doi:10.1002/2014GL062472
Hersbach, H., 2000:Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559-570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
Husak, G. J., J. Michaelsen, and C. Funk, 2007:Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int. J. Climatol., 27, 935-944, doi:10.1002/joc.1441
Jolliffe, I. T., and D. B. Stephenson, 2003:Forecast Verification:A Practitioner's Guide in Atmospheric Science. John Wiley & Sons, New York, 240 pp.
Kann, A., C. Wittmann, Y. Wang, et al., 2009:Calibrating 2-m temperature of limited-area ensemble forecasts using high-resolution analysis. Mon. Wea. Rev., 137, 3373-3387, doi:10.1175/2009MWR2793.1
Khan, M. M., A. Y. Shamseldin, B. W. Melville, et al., 2015:Impact of ensemble size on TIGGE precipitation forecasts:An end-user perspective. J. Hydrol. Eng., 20, L10404, doi:10.1061/(ASCE)HE.1943-5584.0001025
Li, W. T., Q. Y. Duan, C. Y. Miao, et al., 2017:A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdisciplinary Reviews:Water, 4, e1246, doi:10.1002/wat2.1246
Liu, J. G., and Z. H. Xie, 2014:BMA probabilistic quantitative precipitation forecasting over the Huaihe basin using TIGGE multimodel ensemble forecasts. Mon. Wea. Rev., 142, 1542-1555, doi:10.1175/MWR-D-13-00031.1
Liu, L., C. Gao, W. D. Xuan, et al., 2017:Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China. J. Hydrol., 554, 233-250, doi:10.1016/j.jhydrol.2017.08.032
Louvet, S., B. Sultan, S. Janicot, et al., 2016:Evaluation of TIGGE precipitation forecasts over West Africa at intraseasonal timescale. Climate Dyn., 47, 31-47, doi:10.1007/s00382-015-2820-x
Madadgar, S., H. Moradkhani, and D. Garen, 2014:Towards improved post-processing of hydrologic forecast ensembles. Hydrol. Process., 28, 104-122, doi:10.1002/hyp.9562
Matheson, J. E., and R. L. Winkler, 1976:Scoring rules for continuous probability distributions. Manage. Sci., 22, 1087-1095, doi:10.1287/mnsc.22.10.1087
Matsueda, M., and T. Nakazawa, 2015:Early warning products for severe weather events derived from operational medium-range ensemble forecasts. Meteor. Appl., 22, 213-222, doi:10.1002/met.1444
Miao, C. Y., H. Ashouri, K.-L. Hsu, et al., 2015:Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol., 16, 1387-1396, doi:10.1175/JHM-D-14-0174.1
MMC, 2005:Natural hazard mitigation saves:An independent study to assess the future savings from mitigation activities. National Institute of Building Sciences.[Available Online at http://www.floods.org/PDF/MMC_Volume1_FindingsConclusionsRecommendations.pdf].
Morss, R. E., 2010:Interactions among flood predictions, decisions, and outcomes:Synthesis of three cases. Nat. Hazards Rev., 11, 83-96, doi:10.1061/(ASCE)NH.1527-6996.0000011
Nurmi, P., 2003:Recommendations on the verification of local weather forecasts.[Available Online at http://www.cawcr.gov.au/projects/verification/Rec_FIN_Oct.pdf].
Oudin, L., C. Perrin, and T. Mathevet, 2006:Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models. J. Hydrol., 320, 62-83, doi:10.1016/j.jhydrol.2005.07.016
Rana, S., J. McGregor, and J. Renwick, 2015:Precipitation seasonality over the Indian subcontinent:An evaluation of gauge, reanalyses, and satellite retrievals. J. Hydrometeorol., 16, 631-651, doi:10.1175/JHM-D-14-0106.1
Renner, M., M. G. F. Werner, S. Rademacher, et al., 2009:Verification of ensemble flow forecasts for the River Rhine. J. Hydrol., 376, 463-475, doi:10.1016/j.jhydrol.2009.07.059
Richardson, D., R. Buizza, and R. Hagedorn, 2005:First Workshop on the THORPEX Interactive Grand Global Ensemble (TIGGE). WMO/TD-No.1273, WWRP-THORPEX No.5, World Meteorological Organization, Reading, United Kingdom, 8-10.
Robertson, D. E., D. L. Shrestha, and Q. J. Wang, 2013:Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci., 17, 3587-3603, doi:10.5194/hess-17-3587-2013
Sarachi, S., K. L. Hsu, and S. Sorooshian, 2015:A statistical model for the uncertainty analysis of satellite precipitation products. J. Hydrometeorol., 16, 2101-2117, doi:10.1175/JHM-D-15-0028.1
Scheuerer, M., 2014:Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 1086-1096, doi:10.1002/qj.2183
Scheuerer, M., and T. M. Hamill, 2015:Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 4578-4596, doi:10.1175/MWR-D-15-0061.1
Schuhen, N., T. L. Thorarinsdottir, and T. Gneiting, 2012:Ensemble model output statistics for wind vectors. Mon. Wea. Rev., 140, 3204-3219, doi:10.1175/MWR-D-12-00028.1
Schumacher, R. S., and C. A. Davis, 2010:Ensemble-based forecast uncertainty analysis of diverse heavy rainfall events. Wea. Forecasting, 25, 1103-1122, doi:10.1175/2010WAF2222378.1
Shi, H. Y., T. J. Li, and R. H. Liu, 2015:A service-oriented architecture for ensemble flood forecast from numerical weather prediction. J. Hydrol., 527, 933-942, doi:10.1016/j.jhydrol.2015.05.056
Shrestha, D. L., D. E. Robertson, Q. J. Wang, et al., 2013:Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose. Hydrol. Earth Syst. Sci., 17, 1913-1931, doi:10.5194/hess-17-1913-2013
Shukla, S., J. Roberts, A. Hoell, et al., 2016:Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa. Climate Dyn., 1-17, doi:10.1007/s00382-016-3296-z
Su, X., H. L. Yuan, Y. J. Zhu, et al., 2014:Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008-2012. J. Geophys. Res. Atmos., 119, 7292-7310, doi:10.1002/2014JD021733
Swinbank, R., M. Kyouda, P. Buchanan, et al., 2016:The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 49-67, doi:10.1175/BAMS-D-13-00191.1
Themeßl, M. J., A. Gobiet, and A. Leuprecht, 2011:Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 1530-1544, doi:10.1002/joc.2168
Themeßl, M. J., A. Gobiet, and G. Heinrich, 2012:Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449-468, doi:10.1007/s10584-011-0224-4
Tong, K., F. G. Su, D. Q. Yang, et al., 2013:Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265-285, doi:10.1002/joc.3682
UNDP, 2012:Putting resilience at the heart of development:Investing in prevention and resilient recovery.[Available online at http://www.undp.org/content/undp/en/home/librarypage/crisis-prevention-and-recovery/putting-resilicence-at-the-heart-of-development.html].
van Andel, S. J., A. Weerts, J. Schaake, et al., 2013:Post-processing hydrological ensemble predictions intercomparison experiment. Hydrol. Process., 27, 158-161, doi:10.1002/hyp.9595
Verkade, J. S., J. D. Brown, P. Reggiani, et al., 2013:Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrol., 501, 73-91, doi:10.1016/j.jhydrol.2013.07.039
Welles, E., S. Sorooshian, G. Carter, et al., 2007:Hydrologic verification:A call for action and collaboration. Bull. Amer. Meteor. Soc., 88, 503-512, doi:10.1175/BAMS-88-4-503
Wiegand, L., A. Twitchett, C. Schwierz, et al., 2011:Heavy precipitation at the alpine south side and Saharan dust over central Europe:A predictability study using TIGGE. Wea. Forecasting, 26, 957-974, doi:10.1175/WAF-D-10-05060.1
Wilks, D. S., 2006:Statistical Methods in the Atmospheric Sciences. 2nd Ed., Academic Press, San Diego, 627 pp.
Wilks, D. S., and T. M. Hamill, 2007:Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 2379-2390, doi:10.1175/MWR3402.1
Wilson, L. J., 2000:Comments on "Probabilistic predictions of precipitation using the ECMWF ensemble prediction system". Wea. Forecasting, 15, 361-364, doi:10.1175/1520-0434(2000)015<0361:COPPOP>2.0.CO;2
WMO, 2012:Chapter 14:Observation of present and past weather; state of the ground. Guide to Meteorological Instruments and Methods of Observation, WMO, Geneva, Switzerland, 14-19.
Wright, D. B., D. B. Kirschbaum, and S. Yatheendradas, 2017:Satellite precipitation characterization, error modeling, and error correction using censored shifted gamma distributions. J. Hydrometeorol., 18, 2801-2815, doi:10.1175/JHM-D-17-0060.1
Yang, T. H., S. C. Yang, J. Y. Ho, et al., 2015:Flash flood warnings using the ensemble precipitation forecasting technique:A case study on forecasting floods in Taiwan caused by typhoons. J. Hydrol., 520, 367-378, doi:10.1016/j.jhydrol.2014.11.028
Ye, J., Y. He, F. Pappenberger, et al., 2014:Evaluation of ECMWF medium-range ensemble forecasts of precipitation for river basins. Quart. J. Roy. Meteor. Soc., 140, 1615-1628, doi:10.1002/qj.2243
Yucel, I., A. Onen, K. K. Yilmaz, et al., 2015:Calibration and evaluation of a flood forecasting system:Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol., 523, 49-66, doi:10.1016/j.jhydrol.2015.01.042
Zhang, X. J., M. J. Booij, and Y. P. Xu, 2015:Improved simulation of peak flows under climate change:Postprocessing or composite objective calibration? J. Hydrometeorol., 16, 2187-2208, doi:10.1175/JHM-D-14-0218.1
Zhao, T. T. G., J. C. Bennett, Q. J. Wang, et al., 2017:How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Climate, 30, 3185-3196, doi:10.1175/JCLI-D-16-0652.1 |
|
|
|