马申佳,陈超辉,智协飞,何宏让,吴丹. 2018. 基于时空不确定性的对流尺度集合预报效果评估检验[J]. 气象学报, 76(4):578-589, doi:10.11676/qxxb2018.022
基于时空不确定性的对流尺度集合预报效果评估检验
The assessment and verification of convection-allowing ensemble forecast based on spatial-temporal uncertainties
投稿时间:2017-10-12  修订日期:2018-03-22
DOI:10.11676/qxxb2018.022
中文关键词:  对流尺度集合预报  时、空不确定性  邻域概率法  分数技巧评分  时空尺度检验
英文关键词:Convection-allowing ensemble forecast  Spatial-temporal uncertainties  Neighborhood probability (NP) method  Fractions skill score (FSS)  Spatial-temporal scales verification
基金项目:国家重点基础研究发展计划973项目(2017YFC1501800)、南京大气科学联合研究中心重点项目(NJCAR2016ZD04)与面上项目(NJCAR2016MS02)。
作者单位E-mail
马申佳 国防科技大学气象海洋学院, 南京, 211101
南京大气科学联合研究中心, 南京, 210009 
 
陈超辉 国防科技大学气象海洋学院, 南京, 211101
南京大气科学联合研究中心, 南京, 210009 
chenchaohui2001@163.com 
智协飞 南京大气科学联合研究中心, 南京, 210009
南京信息工程大学气象灾害教育部重点实验室, 南京, 210044 
 
何宏让 国防科技大学气象海洋学院, 南京, 211101
南京大气科学联合研究中心, 南京, 210009 
 
吴丹 国防科技大学气象海洋学院, 南京, 211101
南京大气科学联合研究中心, 南京, 210009 
 
摘要点击次数: 266
全文下载次数: 292
中文摘要:
      针对对流尺度天气系统的高度非线性特征和高分辨率模式预报结果存在时、空不确定性现象,以及当前邻域概率法主要考虑高分辨率预报结果的空间位移误差,而不能有效解决预报结果存在时间超前与滞后问题,将时间因素引入到邻域概率法中,结合一次强飑线过程进行对流尺度集合预报试验,并基于改进后的新型邻域概率法与分数技巧评分,对降水预报进行了不同时、空尺度的效果评估检验。结果表明:(1)邻域集合概率法和概率匹配平均法在极端降水的分数技巧评分远高于传统集合平均,弥补了集合平均对极端降水预报能力偏低的缺陷。(2)对于此类飑线过程的对流尺度天气系统而言,邻域半径为15—45 km的空间尺度能够改善降水位移误差的空间不确定性,并使其预报效果达到最优,其中15—30 km的邻域半径对于尺度更小的大量级降水事件预报能力更强。(3)对流尺度降水预报考虑时间尺度与降水强度存在着对应关系,不同时间尺度可以捕获到不同量级降水的时间不确定性。同时,时间尺度与空间尺度对于降水预报效果的影响是相互关联的。(4)改进的邻域概率法能够同时体现高分辨率模式预报结果在对流尺度降水事件上存在的时、空不确定性,实现了对流尺度降水在时、空尺度上的综合评估,并能为不同量级降水提供与其时、空尺度相匹配的概率预报结果。
英文摘要:
      Considering the highly non-linear characteristics of convective-scale weather systems and spatial-temporal uncertainties in high-resolution numerical forecasting, a convection-allowing ensemble forecast experiment has been conducted to simulate a strong squall line. The neighborhood probability (NP) method mainly considers the spatial displacement error in high resolution model forecasts, and cannot effectively address the problem of difference in event occurrence time between forecasts and observations. Therefore, a time factor is introduced into the NP method in this study. And based on the improved NP method and fractions skill score (FSS), the precipitation forecast of the strong squall line is verified on different spatial-temporal scales. The conclusions are as follows:(1) The FSS of extreme precipitation produced by the neighborhood ensemble probability (NEP) and probability matched mean (PMM) methods is higher than that produced by the traditional ensemble mean (EM) method, and the former two methods overcome the shortcomings of the EM method in predicting extreme precipitation. (2) For the squall line process investigated in the present study, the spatial scale of 15-45 km can reduce the spatial uncertainty in displacement error of precipitation forecast and optimize the forecast effect. The spatial scale of 15-30 km exhibits a better forecast capability for smaller-scale extreme precipitation events. (3) The convective-scale precipitation forecast has a corresponding relationship between temporal scale and rainfall intensity, and different temporal scales can capture temporal uncertainties in precipitation with different magnitudes. Meanwhile, the spatial and temporal scales are inter-related for the precipitation forecast effect. (4) The improved NP method can simultaneously show temporal and spatial uncertainties in high-resolution model forecast of convective-scale precipitation, achieve comprehensive evaluation of convective-scale precipitation on temporal and spatial scales, and provide skillful probabilistic forecast results for precipitation with various magnitudes and corresponding spatial-temporal scales.
HTML   查看全文   查看/发表评论  下载PDF阅读器
分享按钮