梯度法观测大气与森林生态系统间
羰基硫(COS)的交换通量

徐晓斌
（中国气象科学研究院·北京.100081）

H. G. Bingemer H. － W. Georgii
（德国法兰克福大学）

G. Gravenhorst H. Kreilein
（德国哥廷根大学）

摘 要
本工作用梯度法测定了大气与其下垫的森林间 COS 的交换通量。测量在德国哥廷根大学的一座50m 高的森林观测塔上进行,该塔坐落在德国中部的 Soling 自然保护区的森林中。观测现场生长着树龄分别为 120a 和 80a 的山毛榉和云杉。树冠线约 28m 高。在塔上离地面 32m, 38m 和 50m 的地方用冷阱法同时采集了空气样品,样品用气相色谱-火焰光度检测法测定。COS 通量由其梯度及扩散系数求出。扩散系数由与 COS 一起测得的感热和水蒸气通量导出。在稳定边界层条件下共获得 20 条廓线。每条廓线都显示 COS 浓度随高度下降而降低的趋势, 说明森林吸收 COS。总的结果表明,COS 向森林中的平均输送通量为(143±54)ng COSm^{-2}·s^{-1}。

关键词: 羰基硫, 通量, 森林。

1 引 言
在远离人为污染源的清洁的大气中,COS 是对流层里最主要的含硫气体。测量表明,它在对流层的平均混合比约 500ppt[1,2], 其时空变化比较小。由于 COS 在对流层中的寿命较长 (>1a), 因而它是在火山熄灭期间平流层硫的最重要的载体[3]。海洋、土壤、生物体燃烧(biomass burning)以及对流层中 C2 的氧化等, 是迄今所发现的几个重要的 COS 来源。这些源每排放大约 2 百万吨 COS, 对 COS 汇的研究相对较少。估计 COS 与 OH 自由基的反应每年去除约 10 万吨 COS, 向平流层的输送约为每年 10－20 万吨 COS。考虑到估计的 COS 源和汇间存在的较大差别, Crutzen[4]推测, 较大的 COS 汇可能存在于陆相生物圈。

生长着的绿色植物是些还原性硫化物, 如 H2S, DMS, CH3SH 和 CS2 等的源。这些化合物在空气中最终被转化为对大气光学和成云过程有重要影响的硫酸盐气溶胶。An-
2 实 验
2.1 观测现场
观测工作在德国中部的 Solling 自然保护区中的名为 Neuhaus 的国家森林中进行。

2.2 样品采集和分析
采样在哥廷根大学林业学系一个建于上述保护区内的 50m 高的试验铁塔上进行。用冷冻捕集法分别在离地 32, 38 和 50m 的高度上同时采集了空气样品。图 1 是采样系统的示意图。每套采样器由 5 个用来富集痕量气体的 U 型玻璃管组成, 管中填有 4-5cm 经硅烷化处理过的玻璃毛, 以增加捕获效率。U 型管两端用聚四氟乙烯管 (内径 0.1588cm) 和尼龙连接件 (内径 0.1588 及 0.3175cm) 连接到两个固定在同一块金属板上的聚四氟乙烯六通阀上。控制进气的六通阀与一个 Nafion (全氟磺酸离子交换膜) 干燥管 (KNF Neuberger Gm bH) 相连。采样时间干燥管的外套管中通以 1l/min 的氮气, 以去除气中的水分。控制出口的六通阀依次与一个质量流量控制器 (MFC) 和一个隔膜泵相连, 经测试, 整个气路具有良好的气密性。采样前用新鲜空气彻底清洗气路。采样时, 空气经过 Nafion 干燥管脱水后, 流入放在液氮中 (沸点 -186°C) 柜瓦瓶里的 U 型管中, 含硫气体以及其它痕量气体因液化或固化而滞留于管中, 从而被富集。空气流量由质量流量控制器控制在 200ml/min, 每个样品的收集时间为 10min, 因而每个样品所采的空气体积是 2.00l。通过手动切换六通阀的方式将所用到的 U 型采样管, 直接采集样品的 U 型管在分析之前一直保存在液氮中。

样品分析采用气相色谱 - 火焰光度检测法 (GC/FPD) 测定。分析设备主要由一台 HP5790 型气相色谱仪和一个专测硫化物的火焰光度检测器 (Tracer) 组成 (见图 2)。硫化物由一根 4.6′ x 1/8′ 特氟龙外壳填充色谱柱 (Carboxapack BHT 100, Supelco) 分离。柱炉被控制在 25°C 恒温状态 (略高于环境温度)。用 99.996% 的高纯氨作载气, 并用活性碳过滤器对氮气进行了过滤, 以去除可能存在的痕量含硫气体。载气流量为 30ml/min。谱图由一台装有 ELAB 卡和软件的微机记录和校理。分析前, 采样管中的硫化物被氮气流引人液氮中的 U 型毛细管冷阱中, 并在此再次富集, 这样可缩小峰宽, 提高分离效率。进样时, 将进样阀拨到“注入”状态, 用一杯水迅速取代冷冻毛细管的液氮, 同时立即启动 ELAB 程序, 被测物挥发后进入分离柱, 约 7min 完成分离和检测。
3 期  徐晓斌等: 指度法观测大气与森林生态系统间碳硫(COS)的交换通量  359

图 1  大气硫化物的冷冻采集器示意图

图 2  痕量大气硫化物的气相色谱-火焰光度测定系统

分析系统每天用标准气体校正。标准气体由 COS 污染管及高纯氮配制。渗透率约 100ng/min 的 COS 污染管(其准确渗透率通过定期称重来确定)被置入一个 30±0.1℃
的恒温装置中,并维持 20ml/min 的高纯氮气流。校正时用色谱注射器(Precision Sampling Co.) 吸入一定量的标气并从进样系统的隔膜处注入到 U 型毛细管中,后续步骤与样
品分析相同。测试表明, 用这种方法测定 COS 的检测下限和精度分别为 60pg 和 5%。

3 结果和讨论

3.1 梯 度

在 1992 年 9 月 23 日至 25 日的 4 次观测中总共获得 20 条 COS 浓度随高度变化的
廓线。每一条廓线都表现出 COS 浓度随高度下降而降低的趋势。这意味着, 树冠以上的
COS 向下沉降。图 3 分别绘出了每次试验的平均廓线。图中水平短线代表平均浓度的标准偏差，它们指示的是每次采样期间（5套样品，共持续 50min）各高度上 COS 浓度的变化程度。可以看出，两高度间 COS 浓度的差别远大于这些标准偏差，这说明，每次测得的浓度梯度不是由于不同高度上 COS 浓度随机变化的结果。

![图像](c)(a)

图 3 4 次量测所得的 COS 平均廓线
(a, 1992 年 9 月 23 日 15:20-16:10；b, 1992 年 9 月 24 日 11:15-12:05；

为了排除能导致较大梯度的可能的错误，作者在采样时故意将各高度所用的采样设备进行了交换，以便了解是否由于采样设备之间的差异引起了虚假的浓度梯度。然而，交换前后的结果是一致的，所以采样器没有显著差异的可能性。

现场试验中选择的分离条件不能将 COS 和 SO₂ 的峰彻底分开，但 SO₂ 干扰的可能性也是可以忽略的。首先，现场观测到的 SO₂ 梯度与 COS 的相比是非常小的，可以忽略。其次，经测试，本文的采样系统及测试方法对 SO₂ 十分不灵敏，这可以用图 4 所示的测试结果来说明。在图 4 中，谱图(i)是 2l 空气样品的结果，有一个较大的 COS 峰和很小的 DMS 峰，它们的保留时间分别为 1.5 min 和 6.1 min。谱图(ii)是直接注入 1.0 ml 标准混合样（SO₂ + DMS）的结果，可以看到一个大的 SO₂ 峰和一个特大的 DMS 峰。由于是直接注入，不存在采样器的影响，因此，除了 6.1 min 处有一个特大的 DMS 峰外，在 1.7 min 处还有一个较大的 SO₂ 峰。假设在采样流路（包括 U 型采样管、Nafion 干燥管及特氟隆管）中不被完全破坏，那么在采样的同时，从样气入口处注入一定量的 SO₂ 应该能被检测出来。但是，试验结果否定了这种假设。谱图(iii)所示的是 2l 空气样加上从样气入口处注入的 1.0 ml 的 SO₂ 和 DMS 混合标准（与图(ii)的完全相同）的结果。与谱图(i)相比，谱图(iii)
中DMS峰为显著地增大了，这是因为加入DMS的结果，但SO₂峰则没有出现。况且COS峰高及峰面积也基本没变，而SO₂峰也没有和COS峰重叠在一起。由此可见，采样器对SO₂的采集是基本无效的。这可能是由于SO₂的挥发性以及未完全被Nafion干燥器去除的少量水蒸气造成的。

较高浓度不含硫有机化合物会干扰GC/FPD法对含硫气体的测定，因为它前者对火焰有"淬灭"作用。许多植物能排放ppb量级的挥发性有机化合物（VOC）。不剔除这些有机化合物对测定干扰的可能性，但这种干扰即使有的话，对于测得的COS梯度的影响估计也是十分微小的。因为有机物的"淬灭"效应是会以负峰的形式表现出来的。可是，除了通常在COS峰前的一个由水蒸气和CO₂所引起的负峰（保留时间约为0.4min）之外，所有图谱中未见超过基线噪音信号的负峰。VOC的负峰也不可能和COS峰叠加，因为气中的几十种甚至上百种的VOC不可能都与COS有相同的或相近的保留时间。总之，VOC对本工作COS梯度测定的影响是不显著的。

3.2 通量

在COS梯度的测量过程中，同时观测了温度、水蒸气浓度、风速和风向等气象参数。通过Bowen比法，由水蒸气及感热的梯度和通量导出了垂直湍流扩散系数。根据相似性原理，树冠以上COS的通量$F$可从下式求出：

$$F = -K_z \frac{\Delta C}{\Delta z}$$

这里，$\Delta z$表示两观测点的高度差，$\Delta C$表示测得的两高度间的COS浓度差，$K_z$是计算所得的垂直湍流扩散系数，负号表示通量向下，换句话说，森林树冠吸收而不是排放COS。

图4 采样系统对SO₂采样效率的测试谱图

(G) 2L空气样，(ii) 直接注入的1.0ml SO₂及DMS标准气，(iii) 2L空气加采样器入口处注入的1.0mlSO₂及DMS标准气)

表1给出了不同层次的COS梯度及相应的通量值。与每次观测时间所对应的小时平均$K_z$值也同时列入了表中。由于是33m到45m的平均$K_z$值，因此计算时三个层
次间的通量值均取同一个 $K_n$。此外，由于缺乏可靠的相应时段的测量数据，用于 1992 年
9 月 24 日第二次观测 COS 通量计算的 $K_n$ 值是从 2h 前的数据线性外推的结果。

如表 1 所示，三个计算层次的通量以及梯度值并不都能很好地一致，尤其是层 I 与层 II 及 III 间的差别较大。在 32m 高度上 COS 浓度的变化程度大于其它高度。图 2 中的水平短线也表明了这一点。这种现象也许与表面粗糙度有关。可能是层 I 的梯度及通量不
代表实际情况所致。平均表 1 中层 II 和层 III 的通量数据，可获得 COS 的平均通量为
143ng COSm$^{-2}$s$^{-1}$，其偏差为 54ng COSm$^{-2}$s$^{-1}$，该结果与 Bartell 及其合作者[7]在德国
巴伐利亚草原上所测的结果较接近。

<table>
<thead>
<tr>
<th>试 验</th>
<th>日期</th>
<th>时段(1)</th>
<th>dC/dx (ppm/m)</th>
<th>$K_n$(m$^2$/s)(2)</th>
<th>通量(ng COS m$^{-2}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1992年9月23日</td>
<td>15:20-16:10</td>
<td>1.3 5.9 4.4</td>
<td>2.3</td>
<td>-8 -36 -27</td>
</tr>
<tr>
<td>b</td>
<td>1992年9月24日</td>
<td>11:15-12:05</td>
<td>29.8 8.0 15.3</td>
<td>11.9</td>
<td>-949 -255 -487</td>
</tr>
<tr>
<td>c</td>
<td>1992年9月24日</td>
<td>17:20-18:10</td>
<td>3.4 3.3 3.4</td>
<td>2.5(3)</td>
<td>-23 -22 -23</td>
</tr>
<tr>
<td>d</td>
<td>1992年9月25日</td>
<td>11:20-12:10</td>
<td>1.2 8.7 6.2</td>
<td>7.4</td>
<td>-24 -172 -123</td>
</tr>
</tbody>
</table>

(1) 中欧夏季时间。
(2) 层 I : 32-38m; 层 II : 38-50m; 层 III : 41-50m。
(3) 33-45m，一小时平均。
(4) 外推结果。

3.3 沉降速度

尝试计算了大气 COS 向森林生态系统的沉降速度 $V_d$。这个速度是由已知的每层
COS 的平均浓度和通量根据下式计算的：

$$V_d = F/C$$  \hspace{1cm} (2)

表 2 列出了计算结果。在式 (2) 中，$F$ 是基于土壤面积算出的，所以这里 $V_d$ 也是以土壤面
积为基准的沉降速度。为了能与同类数据作比较，必须将其转换成以植物叶面积为基准的
沉降速度。

<table>
<thead>
<tr>
<th>试验</th>
<th>C (ppm)</th>
<th>$V_d$ (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>层 I</td>
<td>层 II</td>
</tr>
<tr>
<td>a</td>
<td>476</td>
<td>515</td>
</tr>
<tr>
<td>b</td>
<td>338</td>
<td>475</td>
</tr>
<tr>
<td>c</td>
<td>467</td>
<td>498</td>
</tr>
<tr>
<td>d</td>
<td>425</td>
<td>481</td>
</tr>
</tbody>
</table>

在实验区域内，森林的平均叶面指数（定义为单位土壤面积上叶子的单个表面积之
和）估计约为 5—10。由此可估算出本观测所得的基于叶表面积的沉降速度约为 1.2—2.4
cm/s。
对几种农作物的 COS 吸收通量已经有过实验室研究。这些作物或者被暴露在模拟大气中的 COS 中（~500ppm），或者被置于高浓度（4ppb）的 COS，甚至同位素 33S 标记的高达 125ppb 的 COS 中。在这些实验中，沉降速度是根据被实验植物的叶面积求得的。所获得的沉降速度介于 0.03—0.3cm/s 之间。在草地上空，Mihalopoulos 等 [10] 采用了与本文不相同的方法测得了 COS 在近地表的近地层中的减少现象，并估计了基于叶面积的 COS 沉降速度约为 0.1—0.3cm/s。Bartell 等 [7] 在巴伐利亚草原也测得了较高的 COS 沉降通量。作者虽没给出沉降速度值，但其同量值推算，其沉降速度至少不低于本工作的估算值。由此可见，目前测出的 COS 沉降速度具有较大的变化范围。具体原因目前还不清楚。据知，大气与生态系统间化合物的交换通量是一个十分复杂的问题。首先，由于化合物的排放和吸收一般要通过植物叶面的气孔，因而不同的植物会因气孔的多少和大小的不同而具有不同的气体交换特性。其次，气孔的开放又与气象参数（光、温、湿）密切相关，而且通量的大小还受到对流强弱的影响，因此气象条件会影响到测定结果。最后，采用不同的测量方法也会使测得结果有所差别。考虑到目前所获得的 COS 植物通量方面还存在很大的变化性和不确定性，有必要进行更多的现场观测，以便能尽快掌握陆相生态系统在大气 COS 收支平衡方面所起的作用。

4 小 结

利用冷冻采样及后续的气相色谱分析法，测定了德国中部林区树冠以上 COS 垂直梯度。4 次测量结果无一例外地表明了 COS 浓度随高度降低而下降的趋势。通过实验和分析，排除了各种原因对测量结果影响的可能性。应用测得的梯度及由 Bowen 比法导出的垂直扩散系数求出了平均通量为 (143±54)ngCOSm−2·s−1。根据这一通量估算出基于叶面积的 COS 沉降速度。通过文献中的实验室及野外测量值的比较指出了进一步开展类似现场观测的必要性。

参考文献

ON THE EXCHANGE OF CARBONYL SULFIDE (COS) BETWEEN THE ATMOSPHERE AND A FOREST ECOSYSTEM IN CENTRAL EUROPE

Xu Xiaobin

(Chinese Academy of Meteorological Sciences, Beijing, 100081)

H.G. Bingemer  H. — W. Georgii

(J. W. Goethe-University, Institute for Meteorology and Geophysics, Frankfurt am Main, Germany)

G. Gravenhorst  H. Kreilein

(Georg-August-University, Institute for Bioclimatology, Goettingen, Germany)

Abstract

The flux of carbonyl sulfide between the atmosphere and the underlying forest has been measured by a flux-gradient technique on the 50m tower of the forestry faculty of the University of Goettingen in the Natural Reserve Solling in Central Germany. The site is covered by beech and spruce of 120 and 80 years of age, respectively. The canopy height is around 28 meters. Carbonyl sulfide was sampled simultaneously at 32, 38 and 50m above the ground by cryo-trapping over 10min intervals. Samples were analyzed by GC/FPD. Fluxes of COS above the forest were derived from COS gradients and diffusivities of heat and water vapor. Diffusivities were derived from gradients and fluxes of heat and water vapor measured simultaneously with COS. Twenty sets of profiles have been obtained during daytime under stable boundary layer conditions. Each of the individual profiles shows a decrease of COS towards the top of the canopy that exceeds the analytical uncertainty of the measurement, indicating uptake of COS by the forest. An average COS flux of — (143±54) ng COS m⁻² • s⁻¹ have been obtained.

Key words: Carbonyl sulfide. Flux. Forest.