6月长江中下游旱涝的一个前兆信号——亚洲-太平洋涛动

刘舸1 赵平2 陈军明1 董才桂1,3
LIU Ge1 ZHAO Ping2 CHEN Junming1 DONG Caigui1,3

1. 中国气象科学研究院，北京，100081
2. 国家气象信息中心，北京，100081
3. 中国科学院研究生院，北京，100049

1. Chinese Academy of Meteorological Sciences, Beijing 100081, China
2. National Meteorological Information Center, Beijing 100081, China
3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

2011-11-15 收稿，2012-03-20 改回。

A precursory signal for June precipitation anomalies over the middle and lower reaches of the Yangtze River—the Asian-Pacific Oscillation. Acta Meteorologica Sinica, 70(5): 1064-1073

Abstract Using the precipitation data from the 160 stations of China and the NCEP reanalysis data and the CCSM3 simulations, influencing factors and precursory signals for anomalous precipitation over the middle and lower reaches of the Yangtze River are analyzed in terms of tropospheric temperature. The results show that the anomalous Asian-Pacific Oscillation (APO), reflecting the anomalous zonal land-sea thermal contrast at the middle-upper troposphere, is an important factor for anomalous precipitation over the middle and lower reaches of the Yangtze River. Statistical observational and simulation results suggest that there is a significantly negative correlation between the May APO index and the following June precipitation over the middle and lower reaches of the Yangtze River. The relationship is closer than that between previous winter El Niño (La Niña) and June precipitation, and has a relatively higher stability. Further analyses indicate that APO has a good continuity from May to June, therefore May APO can modulate the intensity and location of the June western Pacific subtropical high, anomalous southwesterly winds over the southeastern coasts of China and anomalous northerly winds at the middle latitudes of eastern China, and eventually leads to anomalous June precipitation over the middle and lower reaches of the Yangtze River. In addition, a clearly weaker May APO is also a critical reason for the above-normal June precipitation over the middle and lower reaches of the Yangtze River in 2011. These results suggest that besides SST forcing, the middle-upper tropospheric anomalies should be considered as an important precursory influencing factor, and it seems worth trying to forecast precipitation using previous APO anomalies.

Key words Asian-Pacific Oscillation (APO), Precipitation, Land-sea thermal contrast, The Yangtze River basin

摘 要 利用中国160个站降水、NCEP再分析等资料和CCSM3模式，从对流层温度的角度，分析了影响6月长江中下游降水的因子和前兆信号。研究发现，反映对流层中高层纬向海-陆热力差异的亚洲-太平洋涛动异常可能是导致长江中下游地区降水异常的一个重要原因。观测统计和模式结果都表明，前期5月亚洲-太平洋涛动指数与其后6月长江中下游地区降水具有显著负相关关系，这一关系比前冬厄尔尼诺(拉尼娜)与6月降水的关系更为紧密，稳定性也相对更高。进一步分析发现，亚
洲-太平洋涛动异常从5月至6月具有很好的持续性。5月亚洲-太平洋涛动可以影响后期6月西太平洋副热带高压的强度和位置。中国东南沿海的西南风以及中国东部中纬度地区的偏北风异常，进而影响长江中下游地区6月降水的多寡。此外，5月亚洲-太平洋涛动异常偏弱也是2011年6月长江流域出现降水异常偏多的一个重要原因。这些结果说明，对于6月长江流域降水，除了海温强迫作用外，对流层中高层异常也是一个重要的前期信号。因此，利用前期亚洲-太平洋涛动预测降水可能是一条值得尝试的途径。

关键词 亚洲-太平洋涛动，降水，海-陆热力差异，长江流域
中图法分类号 P461.2

1 引言

长江中下游地区降水是东亚季风系统的重要成员，降水多寡与中国经济发展和人民生活息息相关。东亚夏季风以及长江流域降水的研究受到广泛的关注，是科研工作的重要方向。2011年6月长江中下游地区降水量较常年同期偏多50%—200%，部分地区甚至超过200%（图1）。那么，导致6月长江中下游降水多寡的原因是什么？有没有明显的前兆信号？这些问题值得深入探讨。

图1 2011年6月降水距平百分率
（单位：%，阴影区表示距平百分率超过±50%）
Fig.1 Percentages of the June precipitation anomalies in 2011 (unit: %, the areas with the values over ±50% are shaded)


最近的研究发现，春季和夏季反映对流层中高层纬向海-陆热力差异的亚洲-太平洋涛动（APO）指数可以很好地反映中国东部降水异常（Zhao, et al., 2007; 赵平等，2008; Zhou, et al., 2010; Zhao, et al., 2011a）。当 APO 指数偏高（低）时，东亚中纬度低层盛行异常南（北）风，梅雨锋位置偏南（北），长江流域少（多）雨。夏季 APO 与前期亚洲对流层温度密切相关，并且，亚洲对流层温度从春到夏存在很好的持续性（Zhao, et al., 2011b）。这一结果暗示前期 APO 可能是一个反映长江流域降水多寡的前兆信号。为此，研究了前期 5 月 APO 指数与长江中下游地区 6 月降水的关系，着重探讨了前期 APO 影响长江中下游 6 月降水的可能原因，以期提供一个物理意义较为清楚的前兆因子。同时，还利用该因子对2011年6月长江中下游降水进行了定性预测。

2 资料和方法

所用资料包括：中国国家气候中心提供的
1951—2011年中国160站的逐月降水；NCEP大气再分析资料，包括1951—2011年的月平均风和位势高度，水平分辨率为2.5°×2.5°（Kalnay等，1996）美国国家海洋和大气局（NOAA）气候诊断中心的海表温度扩展重建资料（NOAA Extended Reconstructed Sea Surface Temperature V2），水平分辨率为2°×2°（Smith等，2004）。

为了进一步验证5月AP0与6月长江中下游降水的关系，利用美国大气研究中心海-气耦合模式CCSM3进行了检验。该模式耦合了大气、海洋（Smith等，2002）、陆面（Bonan等，2002）和海冰模式（Bitz等，2001）。在模式原有初始基础上，选择了1950年，选取后100年的结果进行分析。

3 前期5月AP0与6月长江中下游降水的关系

3.1 AP0与降水的相关关系

根据图1降水偏多区，选取（27°—32°N，110°—123°E）范围内（共计20个站）的6月降水量代表长江中下游地区降水，将其定义为6月长江中下游降水指数（I60），进而研究I60与对流层温度的关系。研究发现，与6月长江中下游降水异常紧密联系的AP0信号可追溯到前期5月。图2a给出了1951—2011年I60与前期5月对流层中上层（500—200 hPa）T’的相关分布，这里T’ = T – T，其中T指对流层温度，T指T的纬圈平均。东亚中纬度地区出现了显著负相关，其中50°N，110°E附近相关中心的相关系数为-0.40，超过99%的统计置信度；在东太平洋中纬度地区则表现为显著正相关，（45°N，150°W）附近相关中心的相关系数同样超过0.40，超过99%的统计置信度。太平洋和东亚上空的正、负相关结构与AP0结构非常一致，只是显著区位置与赵平等（2008）定义的夏季AP0略有差别。

参考赵平等（2008）关于AP0指数的定义，根据图2a中显著相关区位置，将5月AP0指数（IAP0）定义为

$$ I_{AP0} = T'(90°-130°E, 40°-55°N) - T'(160°-130°W, 40°-50°N) $$

（1）

其中，T’（90°—130°E，40°—55°N）代表东亚（40°—55°N，90°—130°E）区域平均500—200 hPa的T’，而T’（160°—130°W，40°—50°N）则代表太平洋（40°—50°N，160°—130°W）区域平均500—200 hPa的T’。

图2 (a)1951—2011年I60序列与前期5月500—200 hPa T’场的相关分布（阴影区超过95%统计置信度）；(b)前期5月IAP0与6月降水的相关分布（阴影区超过90%统计置信度）及(c)I60与5月IAP0（实线）和6月降水（虚线）的标准化序列

Fig. 2 (a) Correlation between I60 and the prophase May 500–200 hPa T’ field for 1951–2011 (Shaded areas are significant at the 95% confidence level)；(b) correlation between the prophase May IAP0 and June precipitation (Shaded areas are significant at the 90% confidence level) and (c) normalized time series for I60 (dashed line) and May IAP0 (solid line)

1951—2011年5月IAP0与6月长江流域降水的相关分布（图2b）表明，长江中下游地区为显著负相关。此外，比较图2c中标准化的I60和IAP0序列...
也可以发现，对应 5 月 $I_{Apo}$ 偏低（高），往往会出现偏高（低）的 $I_{E}$，两序列相关系数为 $-0.47$，超过 99.9% 的统计置信度。


表 1 1951—2011 年标准化的长江中下游 6 月降水 ($I_{E}$)、前冬 $I_{Efp}$ 和 5 月 $I_{Apo}$

<table>
<thead>
<tr>
<th>年份</th>
<th>$I_{E}$（σ）</th>
<th>冬季 $I_{Efp}$（σ）</th>
<th>5 月 $I_{Apo}$（σ）</th>
<th>年份</th>
<th>$I_{E}$（σ）</th>
<th>冬季 $I_{Efp}$（σ）</th>
<th>5 月 $I_{Apo}$（σ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>-0.42</td>
<td>-0.49</td>
<td>1.60</td>
<td>1982</td>
<td>0.18</td>
<td>-0.14</td>
<td>-0.02</td>
</tr>
<tr>
<td>1952</td>
<td>-0.93</td>
<td>0.18</td>
<td>1.89</td>
<td>1953</td>
<td>0.04</td>
<td>0.40</td>
<td>1.20</td>
</tr>
<tr>
<td>1954</td>
<td>3.51</td>
<td>-0.45</td>
<td>-0.73</td>
<td>1955</td>
<td>0.52</td>
<td>0.56</td>
<td>0.19</td>
</tr>
<tr>
<td>1956</td>
<td>-0.39</td>
<td>-1.29</td>
<td>-0.11</td>
<td>1957</td>
<td>0.97</td>
<td>0.89</td>
<td>0.21</td>
</tr>
<tr>
<td>1958</td>
<td>1.93</td>
<td>1.23</td>
<td>0.44</td>
<td>1959</td>
<td>-0.08</td>
<td>-0.08</td>
<td>0.39</td>
</tr>
<tr>
<td>1960</td>
<td>-0.37</td>
<td>-0.23</td>
<td>1.16</td>
<td>1961</td>
<td>0.59</td>
<td>0.13</td>
<td>0.65</td>
</tr>
<tr>
<td>1962</td>
<td>0.36</td>
<td>-0.39</td>
<td>0.88</td>
<td>1963</td>
<td>-1.57</td>
<td>-0.81</td>
<td>2.64</td>
</tr>
<tr>
<td>1964</td>
<td>0.98</td>
<td>-0.01</td>
<td>1.54</td>
<td>1965</td>
<td>-0.62</td>
<td>-0.60</td>
<td>-0.21</td>
</tr>
<tr>
<td>1966</td>
<td>-0.42</td>
<td>0.89</td>
<td>-0.25</td>
<td>1967</td>
<td>0.02</td>
<td>0.89</td>
<td>0.22</td>
</tr>
<tr>
<td>1968</td>
<td>-1.07</td>
<td>-1.45</td>
<td>0.47</td>
<td>1969</td>
<td>0.29</td>
<td>0.15</td>
<td>0.88</td>
</tr>
<tr>
<td>1970</td>
<td>0.20</td>
<td>0.55</td>
<td>0.62</td>
<td>1971</td>
<td>-1.32</td>
<td>-0.30</td>
<td>-0.24</td>
</tr>
<tr>
<td>1972</td>
<td>-1.16</td>
<td>-0.36</td>
<td>1.21</td>
<td>1973</td>
<td>1.58</td>
<td>1.72</td>
<td>1.23</td>
</tr>
<tr>
<td>1974</td>
<td>-0.36</td>
<td>-1.20</td>
<td>-0.15</td>
<td>1975</td>
<td>0.39</td>
<td>-0.85</td>
<td>-0.58</td>
</tr>
<tr>
<td>1976</td>
<td>-0.14</td>
<td>-1.45</td>
<td>-0.16</td>
<td>1977</td>
<td>0.89</td>
<td>0.32</td>
<td>-1.83</td>
</tr>
<tr>
<td>1978</td>
<td>-1.01</td>
<td>-0.04</td>
<td>-0.55</td>
<td>1979</td>
<td>0.03</td>
<td>-0.13</td>
<td>-0.58</td>
</tr>
<tr>
<td>1980</td>
<td>-0.04</td>
<td>0.09</td>
<td>-0.24</td>
<td>1981</td>
<td>-1.53</td>
<td>-1.14</td>
<td>0.01</td>
</tr>
</tbody>
</table>

表注：斜体字代表与历史统计关系一致，黑体字代表与历史统计关系相反。

前期厄尔尼诺（拉尼娜）异常与长江中下游降水具有密切联系（赵光春等，2006）。那么，前期 APO 与 6 月长江中下游降水的关系与前期厄尔尼诺（拉尼娜）异常与降水的关系相比，是否更为紧密呢？为此对两者进行了比较。

为了说明降水与前期厄尔尼诺（拉尼娜）关系的演变特征，给出了 1951—2011 年 6 月长江中下游降水与前期各月赤道东太平洋（5°S—5°N，100°—175°W）海表温度的相关系数序列（图 3）。可见只有前期冬季（12 月—2 月）的相关系数超过 90% 统计置信度，3 月相关系数已迅速降为 0.12。与 6 月长江中下游降水密切相关的前期厄尔尼诺（拉尼娜）异常主要表现在前期冬季。因此，将（5°S—5°N，100°—175°W）区域平均的海表温度定义为赤道东太
平洋海温指数（记为 I_{ETP}），并据此分析了前冬 I_{ETP} 与 6 月长江中下游降水的关系。1951—2011 年前冬 I_{ETP} 与 6 月长江中下游降水 (I_{6}) 的相关系数 (0.26) 尽管达到 95% 的置信度，但两者同号率仅为 46%（即与历史统计相关结果一致；见表 1）。此外，6 月长江中下游降水极端偏多和偏少年共计 17 年中，与历史统计相关结果一致的有 11 年，也相对偏少（见表 1）。

综上所述，长江中下游地区降水与前冬厄尔尼诺（拉尼娜）关系的稳定性相对较差，与前冬赤道东太平洋海表温度异常相比，前期 5 月 APO 与 6 月长江中下游降水具有更紧密的联系。而且，前期 5 月 APO 对 6 月长江中下游降水极端年份的代表性也比前冬赤道东太平洋海表温度的代表性略好。然而，需要指出的是，利用前冬厄尔尼诺（拉尼娜）预测汛期降水属于跨季节的短期气候预测，时效较长。而前期 5 月 APO 反映 6 月降水的时效仅为 10—20 d，属于中期延伸期预测范畴。可见，本文的比较并不意味着利用 APO 预测降水比厄尔尼诺（拉尼娜）更“好”，仅在说明前期 5 月 APO 对 6 月降水的可预报性水平与较为经典的厄尔尼诺（拉尼娜）预测降水的水平相当，可以作为一个反映 6 月降水的前兆信号，进而为中期延伸期预报提供参考。

如果 6 月长江中下游降水与前期 5 月 APO 的关系不仅仅是表面上的统计相关，而是具有某种物理联系，那么在模式中，两者的联系也应该存在。因此，为了验证 6 月长江中下游降水与前期 5 月 APO 指数的关系，利用 CCSM3 的输出结果做了进一步分析。图 4 为 CCSM3 中的 5 月 I_{APO} 与 6 月降水的相关。在长江中下游地区表现为显著负相关，这一负相关关系与观测统计结果非常一致，进一步证实了 6 月长江中下游降水与前期 5 月 APO 的关系是可靠的，也说明这种关系能够被物理过程支持。

然而，比较图 4 和图 2b 可以看出，在观测中存在的前期 5 月 I_{APO} 与 6 月华北地区 (36°—42°N, 110°—120°E) 降水的显著负相关在模式中并不存在。进一步分析发现，CCSM3 模式可以很好地模拟出影响长江中下游降水异常的实际环流结构，但难以有效地模拟出影响华北地区降水的实际环流特征（图略）。可见该模式在描述华北降水以及相应的环流方面具有局限性。由于本文重点讨论影响长江中下游降水的影响因子和前兆信号，因此，对华北地区降水异常不做过多探讨。

3.2 APO-大气环流-降水的相互联系

3.1 节中发现前期 5 月 APO 变化与 6 月长江中下游降水具有密切联系。那么它们之间的紧密联系是通过什么环流系统实现的呢？图 5a 给出了 I_{6} 回归的 6 月 500 hPa 位势高度距平图，其中，在中国南海及其东侧地区出现了显著正距平，中心值为

![图 3 1951—2011 年 6 月长江中下游降水与前期各月赤道东太平洋区域海表温度相关系数曲线](image)

*Fig. 3 Time series of the correlation coefficients between the I_{ETP} and the prophase monthly I_{ETP} for the period 1951—2011*

![图 4 CCSM3 模式中 5 月 I_{APO} 与 6 月降水的相关](image)

*Fig. 4 Correlation between the May I_{APO} and the June precipitation from the outputs of the CCSM3 (Shaded areas are significant at the 95% confidence level)*
4 gpm。对应图5a中的位势高度显著正距平，850 hPa风场在该地区表现出显著反气旋性异常(图5b)。这说明西太平洋副热带高压(副高)及其相应的低层风场与长江中下游地区降水具有密切联系，是导致长江中下游地区旱涝的重要环流系统。当副高偏强、位置偏西时(也即图5a的南海附近关键区出现位势高度正异常)，副高西缘低层偏南风气流加强，并控制中国东南部地区，有利于暖湿气流从热带向中国东部输送(图5b)，并与中国东部中纬度地区的异常偏北风辐合，在25°—30°N附近出现异常上升运动(图5c)，因此，长江中下游地区降水偏多，反之当副高偏弱、位置偏东时(也即图4a的南海关键区出现位势高度负异常)，长江中下游地区降水偏少。

图5 1951—2011年I_{ASO}回归的6月
(a)500 hPa位势高度距平场(单位：gpm)；
(b)850 hPa风场及(c)经向垂直环流沿115°E的剖面
(阴影区超过95%统计置信度)
Fig. 5 Regressed June (a) 500 hPa geopotential height (unit: gpm); (b) 850 hPa winds; and
(c) vertical-latitudinal cross section of the circulation along 115°E against I_{ASO}
for 1951—2011 (shaded areas are significant at the 95% confidence level)

前期5月I_{ASO}回归的6月500 hPa位势高度距平场(图6a)显示出大范围的显著负距平，其中，在南海附近地区存在一个负距平中心(−7 gpm)，相应地850 hPa风场在这一地区出现了气旋性异常，在该异常气旋西缘(即中国东南沿海)为异常东北风，同时在中国东部105°—120°E附近中纬度地区出现了显著偏南风异常(图6b)。另外，前期5月I_{ASO}回归的6月经向垂直环流沿115°E的剖面(图6c)显示，在25°—30°N附近出现异常下沉运动。这

些特征与图5所示异常基本一致，但符号相反。说明前期5月I_{ASO}偏弱时，有利于6月副高偏强、位置偏西，从而导致中国东南沿海西南气流加强，有利于暖湿空气从热带向中国东部地区输送，并在长江流域与中高纬的异常偏北风辐合，上升，进而引起长江中下游地区降水偏多，反之则降水偏少。由此可见，5月APO可以通过影响6月副高的强度和位置、相应的中国东南沿海西南风以及中国东部中纬度地区偏北风异常，进而与6月长江中下游地区降水相联系。
3.3 2011年 APO 与 6月长江中下游洪涝

在 3.1 节，发现长江中下游地区降水与前冬厄尔尼诺（拉尼娜）关系的稳定性相对较差。其2011年的情况而言，利用前期拉尼娜信号也无法解释2011年6月长江中下游地区降水偏多。那么，利用前期 APO 信号，是否可以对此做出正确推测呢？2011年5月 APO 指数异常偏低，其标准化值为$-1.57\sigma$，仅次于1975和1995年。根据图6的回归结果可推测，2011年6月中国南海附近将出现位势高度显著异常，也即副热带偏强，位置偏西。在副高西缘偏强的西南风作用下，有利于暖湿气流向北输送，并与中国东部中纬度地区的偏北风异常在长江流域辐合，产生上升运动，进而导致长江中下游地区降水异常偏多。

实测500 hPa位势高度（图7a）显示，2011年6月的5880 gpm等值线比气候平均5880 gpm等值线范围更大。这说明2011年6月副高偏强，位置偏西。相应地，副高西缘西南风偏强，并在长江中下游地区与来自中高纬的异常偏北风辐合，上升（见图7b、c），因此降水异常偏多。这与前面的推测完全一致，说明前期5月 APO 指数偏低是2011年6月长江中游出现降水异常偏多的一个重要原因。

4 结论与讨论

本文从亚洲、太平洋地区对流层温度的角度探讨了6月长江中下游地区降水的影响因子和前兆信号。研究发现，前期5月亚洲-太平洋振动异常可能是导致6月长江中下游地区降水异常的重要原因之一。观测和CCSM3模式的统计结果一致表明，它们具有显著负相关关系。从5月至6月 APO 异常具有很好的持续性，5月 APO 可以通过影响后期副高的强度和位置、相应的中国东南沿海西南风以及中国东部中纬度地区的偏北风异常，进而影响6月长江中下游地区降水。2011年5月 APO 指数显著偏低，随后6月长江中下游出现降水异常偏多，也与上述关系符合。可见，前期 APO 指数异常偏低，可能是2011年6月长江中下游出现洪涝的一个重要
原因。

那么，5月 APO 变化又是如何影响到后期的环流异常的呢？这里给出一种物理解释。图 8 给出了 5月 APO 指数与 6月 500—200 hPa $T'$ 场的相关，显示在东亚中纬度地区出现了显著的正相关，而在太平洋中纬度地区则表现为显著负相关，形成了清晰的 APO 型特征，反映了 5月 APO 现象的一种持续性。事实上，1951—2011 年的 5月与 6月 APO 指数的相关系数为 0.56（超过 99.9％的统计置信度），这进一步支持了 5月 APO 信号可以持续到随
后的6月，从而对6月亚洲-太平洋大气环流及相应降水产生调节作用。Zhao等(2011b)基于观测资料和数值模拟的研究结果表明，亚洲陆地的加热异常可以引起亚洲区域对流层温度显著变化，并且5月亚洲区域对流层温度异常可以持续到夏季。由于东亚区域对流层中上层温度本身就是构成APO的重要成分，因此，亚洲对流层温度的持续性可以造成APO的持续性。

春、夏季APO与ENSO存在着显著联系（赵平等,2008;Zhao等,2011b;Nan等,2009），然而这种关系并不是反映ENSO对APO的影响。相反，在APO理论框架下，春、夏季青藏高原加热异常可以通过影响北太平洋副高、中低纬太平洋哈得来环流以及热带辐合带（ITCZ）调节热带ENSO发展及太平洋中纬度海-气相互作用（周秀骥等,2009;Nan等,2009;Zhao等,2011b）。并且，春、夏季亚洲-太平洋大气环流变化可能主要不是受太平洋海表温度异常的影响，而亚洲大陆抬升加热可能在全球中起更重要作用（Zhao等,2011b）。因此，对于5月大气环流和降水而言，ENSO的作用相对偏弱，而与亚洲大陆加热密切联系的APO的作用则更为重要。当然，利用前期ENSO预测降水可提前3个月进行，而APO的预测时效（5月预测6月）相对偏短。尽管如此，由于前期5月APO是影响6月长江中下游降水的重要因子，且影响机制较为清楚，所以，可以作为一个前兆信号。从中期延伸预测的角度来看，也可为6月长江中下游降水预测提供一定参考。另外，由于目前气候模式反映对流层温度变率的能力较好，NCEP的气候预报系统（CFS）模式预报的1982—2009年夏季APO指数（从1月开始起报）与观测的APO指数的相关系数高达0.39，超过95%统计置信度。因此，通过该模式可能将APO预测降水的起始时间从5月提前到冬季，对此值得今后深入探讨。

本文分析了与亚洲大陆加热紧密联系的对流层温度异常（表现为APO）对6月长江中下游降水的影响。实际上，影响中国汛期降水的因子有很多，海温异常、欧亚大陆和青藏高原积雪、高原植被、土壤湿度以及海冰等，都对中国降水有重要作用（陈乾金等,2000;Zhao等,2004;武炳义等,2004;赵平等,2009）。对于汛期降水预测，显然需要综合考虑各种因子的共同作用。需要指出的是，以往的研究更多地关注热带海洋对东亚气候的影响，对亚洲大陆加热影响的研究相对不足，在一定程度上制约了中国汛期降水预测水平的提高，这可能是今后研究工作和预测业务中需要特别注意的。

参考文献
符淙摆在,滕思林,1988. 我国夏季的气候异常与埃尔尼诺/南方涛动现象的关系. 大气科学,12(特刊):133-141
高辉,王永光.2007.ENSO对中国夏季降水可预测性变化的研究. 大气科学,31(1):131-137
金祖辉,陶诗言.1999. ENSO循环与中国东部地区夏季和冬季降水关系的研究.大气科学,23(6):663-672
周秀骥,倪允琪,1998. ENSO对亚洲夏季风环流和中国降水影响的诊断研究. 气象学报,56(6):681-691
武炳义,卡林根,张人禾,2004. 夏季北极涛动和北极海冰变化对东亚气候变化的影响. 极地研究,16(3):211-220
赵亮,邹立,王成林等,2006. ENSO年东亚夏季异常对东亚海气耦合区域的主要影响.极地研究,16(3):293-300

①陈军明.2011. CFS模式对季风指数的预报能力评估. 中国气象科学研究院气候系统研究所内部交流.
Smith R, Gent P. 2002. The parallel ocean program reference manual for ocean component of the Community Climate System Model (CCSM3, 0) (Available online at www.cesm.ucar.edu/models)